BESIII track reconstruction algorithm based on machine learning

Xiaoqian Jia, **Xiaoshuai Qin**, **Teng Li**, **Xingtao Huang**, **Xueyao Zhang**, **Yao Zhang** and **Ye Yuan**

1. Shandong University, Qingdao, China 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Motivation

- **BESIII**
 - Operate at Beijing Electron-Positron Collider II (BEPCII)
 - CMS: 2.0 - 4.95 GeV, τ - charm region
 - Study the electroweak and strong interactions

Track finding algorithm

- Play essential roles in the offline data processing
- Traditional algorithms include template matching, track segment finder and Hough transform etc.
- Potential improvement for low momentum tracks and tracks with high noise level.

Methodology

- Pattern Map based on MC simulation
 - The collection of sense wires that could potentially represent two successive hits on a track
 - Two million single tracks (e⁺, K⁺, μ⁺, p⁺, π⁺, π⁻) from BESIII MC truth information used to build pattern map
 - To reduce the number of fake edges during graph construction

- Graph construction
 - Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer, next layer
 - Node features
 - Raw drift time, 2D coordinates of the sense wires
 - Edge Classifier based on GNN
 - Input network
 - Node features embedded in latent space

- Clustering of Tracks Based on DBSCAN
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

Filtering Noise via GNN

- Graph model
 - Node network and Edge network, MLPs
 - 8 graph iterations

- Signal selection performance
 - Single-particle (e⁺, K⁺, μ⁺, p⁺, π⁺, π⁻) MC sample
 - Mixed with BESIII random trigger data as background (~45% hits)

- Preliminary Results

 - Single-particle (e⁺, K⁺, μ⁺, p⁺, π⁺, π⁻) MC sample
 - Mixed with BESIII random trigger data as background (~45% hits)

Conclusions

- We demonstrate a novel tracking algorithm based on machine learning method
 - GNN to distinguish the hit-on-track from noise hits.
 - Clustering method based on DBSCAN to cluster hits from multiple tracks.

The preliminary results present promising performance, and further optimization of the model is needed to boost reconstructed performance.

Reference

1. Steven Farrell et al, arxiv: 1810.06111
2. Jin Zhang et al, DOI:10.1007/s41605-018-0052-4