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Mate Zoltan Farkas
Analysis Introduction

▶ Goal: inference of signal strength modifier parameters with cINNs
▶ Motivation:

• Posterior inference with cINNs is time-efficient
• Normalizing flows preserve gradients

▶ Analysis:
• Signal processes: ggZH, ZHDY, WH
• 13 Background processes: DY, VBF ...
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Mate Zoltan Farkas
Analysis Strategy and -Setup

▶ Analysis is based on simulated MC samples
▶ Multi-process classification:

1. MC simulation
2. Final state object selection
3. DNN categorization

▶ Fit observables: histogrammed DNN scores
• used as condition for the cINN
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Mate Zoltan Farkas
Conditional Invertible Neural Networks – Theory
▶ Fit model posteriors pϕ(x|c) to the true

posteriors p(x|c)
▶ Training: Map inputs to a N (z|0, 1)
▶ Inference: Sampling from N (z|0, 1) and

Inversion → posterior

▶ Network:
• Affine blocks and permutation layers
• Conditions c input for each affine block8 Ksoll et al.
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Figure 6. Schematic representation of the cINN architecture used for the physical parameter prediction based on photometry. In total
we use 16 conditional affine coupling blocks interchanged with random permutation layers.

cannot ignore the conditioning input when learning the for-
ward mapping. The subnetworks in the conditional affine
coupling layers are simple fully connected feed-forward net-
works with three hidden layers of width 512 with rectified
linear units (ReLU) as activation functions. Figure 6 pro-
vides a schematic overview of our setup for the cINN.

We train the cINN models as described in Ardizzone
et al. (2019b) by minimization of the maximum likelihood
loss

L = Ei

[
| | f (xi; ci, θ)| |22

2
− log |Ji |

]
, (9)

where xi is a training example with its corresponding condi-
tion ci and Ji denotes the determinant of the Jacobi matrix

Ji = det
(
∂ f
∂x

���
xi

)
evaluated at xi.

For each training set the cINN is trained until the loss
curve converges, but at least long enough that the model
has seen each training example multiple times.

3.3 Data Pre-Processing

In preparation for training the cINN we split our training
data into physical parameters x (age, Mini, Mcurr, L, Teff , g)
and observables y (magnitudes + AV). To avoid issues in
the training process that can occur due to their broad range
of values, the physical parameters are transformed to loga-
rithmic space. This serves not only to even out magnitude
differences, but it has the general benefit of implicitly enforc-
ing that these quantities can only be positive. Since all our
observables are photometric magnitudes and thus already
a logarithmic quantity, this step is not necessary there. On
top of that we add a small amount of Gaussian noise (stan-
dard deviation of 1×10−5) to the strongly discretised log(age)
parameter. This form of data augmentation through a small
amount of noise serves to smooth out discretization artifacts
of the input (Ardizzone et al. 2019b). The remaining param-
eters are sampled unevenly enough that augmentation with
noise is unnecessary.

After that we re-scale each parameter so that their re-
sulting distribution has zero mean and unit standard devia-
tion, following the linear transformation

x̂i = (xi − µxi ) ·
1
σxi

, (10)

where µxi and σxi are the mean and standard deviation of
the distribution of the physical parameter xi . At prediction
time these linear re-scaling operations are easily inverted in
order to retrieve the correct predicted physical parameters
xi,pred from the predicted x̂i,pred as

xi,pred = x̂i,pred · σxi + µxi . (11)

For the observables, after first centring the data (ỹi = yi −
µyi ), we perform a matrix whitening procedure (HyvÃd’ri-
nen & Oja 2000) on the N×M matrix Ỹ, where N is the total
number of examples in the training set and M the number
of observables. The resulting linearly transformed matrix Ŷ
has the properties that all its columns ŷi have unit variance
and that its covariance matrix ΣŶ is equal to the unity ma-

trix. Ŷ is calculated as follows:

Ŷ =WỸỸ = ED−
1
2 ET Ỹ, (12)

where E is the orthogonal matrix of eigenvectors of the co-

variance matrix ΣỸ of Ỹ and D−
1
2 = diag(d−

1
2

1 , ..., d
− 1

2
m ) with

di being the ith eigenvalue of ΣỸ. In practise we add a fudge

factor ε = 1 × 10−7 in the calculation of D−
1
2 to avoid over-

amplification of eigenvectors associated with small eigenval-
ues

D−
1
2 = diag

(
1

√
d1 + ε

, ...,
1

√
dm + ε

)
. (13)

The scaling parameters µxi , σxi , µyi and WỸ are calcu-
lated from our entire synthetic data set, before we perform
the split in training and test set. At prediction time of the
real data from Wd2 and NGC 6397 the observational data is
scaled using the same scaling parameters derived from the
synthetic data the respective models were trained on (e.g. if
we train the cINN on the synthetic data set ’Wd2 I’, the real
observations are scaled using the scaling parameters derived
from that data set).

3.4 Evaluating Training Success

After training our models until the maximum likelihood
loss converges, we evaluate the performance of these trained
models on a held-out subset of the training data. In all our
cases these randomly chosen test subsets contain 20,000 ob-
servations. On a given test set we begin verifying if the cINN

MNRAS 000, 1–38 (2020)
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Mate Zoltan Farkas
Network Setup – Data Preparation

▶ Goal: infer signal modifier parameters {µi}
→ dataset contains expected {µi} and
nuisance parameter effects

▶ Priors:
• Signal: Γ(x; k = 1.5; θ = 7)

→ finer sampling around expected µ
• Background:

– Lognormal with mean 1± 27%

• Luminosity nuisance:
– Lognormal around 1± 2%
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Mate Zoltan Farkas
Network Setup – Dataset – Uncertainties

▶ Statistical uncertainties
• Expected measurement uncertainty
• MC sample size

▶ Systematic effects:
• Normalizing uncertainties
• Shape-changing uncertainties

→ Histogram template morphing
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Latent Distributions

▶ Training: loss converges
▶ Latent space distribution follows N (0, 1)

▶ Sampling from N (0, 1) yields
well-approximated posteriors

...
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Calibration Curves

▶ Calibration error: measure of model bias

ecal(q) =
N in

N
−q, q quantile; q ∈ [0, 1]

▶ N in: number of posteriors containing the
true MC value in their q quantile

▶ Ideal calibration: ecal(q) = 0

· · ·

▶ Max median absolute calibration error ≲ O(0.04)
⇒ No strong biases in the network model
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Predictions

▶ 3 parameters groups per sensitivity:
• well-reconstructed parameters (µDY ...)
• unrecognized parameters (µVBF ...)
• weakly-recognized parameters (µlumi...)

▶ Signal: sensitivity threshold for small µ

9/11

cINN

c

training training

inference inference

z1
z2
z3
...

µWH

µDY

µlumi

...

η1
η2
η3
..
ηn

x z zk ∼ pk(zk)xk ∼ pk(xk)



Mate Zoltan Farkas
Signal Modifier Parameter Inference – Posteriors (Asimov)
▶ Background (dy, ...):

• narrow posteriors = high sensitivity
▶ Unrecognized (VBF, ...):

• posteriors = priors
▶ Luminosity nuisance: weakly recognised
▶ Signal: highest sensitivity for WH
▶ Comparable results to likelihood fit
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Mate Zoltan Farkas
Conclusion

▶ cINN is able to infer the signal strength
modifiers

▶ Good prediction performance
• Latents follow N (0, 1)
• No strong biases in the model
• Sensitivity drop for signal for small µ
• Comparable results to likelihood fit
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Mate Zoltan Farkas
Network Setup – cINN Architecture

▶ dim c = 235

▶ dimx = 17

• 3 signal modifier parameters
• 13 background modifier parameters
• 1 nuisance parameter (luminosity)

▶ 12 GLOW Blocks with permutation layers
▶ Subnetworks with 3 layers à 128 nodes with ReLU
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Mate Zoltan Farkas
The GLOW Coupling Block Stellar Parameters from INNs 7
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Figure 5. Schematic overview of the architecture of the conditional affine coupling blocks used in the cINN. In particular we show the

GLOW (Generative Flow; Kingma & Dhariwal 2018) configuration, where the outputs si() and ti() are computed by a single subnetwork

(for each i). The top panel shows how data is passed through the block in the forward direction (from x to z), while the bottom panel
displays the inverted case following the affine transformations in Equations(4) and (5).

GLOW (Generative Flow; proposed by Kingma & Dhari-
wal 2018) configuration (see Section 3.2 for details). In this
setting the forward mapping is modified to f (x; c) = z and
the inverse to x = g(z; c). The invertibility is given for fixed
condition c as

f ( · ; c)−1 = g( · ; c). (6)

In our regression problem the conditioning is given by the
observations. Therefore, as for the standard INN, during
training given an observation the network will learn to en-
code all information about the physical parameters in the
latent variables that was not contained in the observation.
Also analogous to the standard INN, we retrieve the de-
sired posterior distribution p(x|y) for a given observation y
by sampling the latent variables according to their Gaussian
priors and using the inverted network g:

xposterior = g(z; c = y), with z ∼ pZ (z) = N(z, 0, I), (7)

where I is the K × K unity matrix with K = dim(z).
One of the cINN benefits over the standard INN archi-

tecture is that no zero padding (as described in Ardizzone
et al. 2019a) is necessary if the dimension of [y, z] were to
exceed that of x, as the conditioning input c can be arbi-
trarily large in this approach and the dimension of z simply
matches that of x.

3.2 Architecture Details

To implement the cINN for our purposes we use the ’Frame-
work for Easily Invertible Architectures’ (FrEIA) for python
(Ardizzone et al. 2019a,b) based on the ’pytorch’ library
(Paszke et al. 2017).

In our problem the input x is given by the six physi-
cal parameters of the isochrone tables, so that, following the

cINN architecture, we also have six latent variables z. Our
cINN is conditioned on the observables, 2 and 5 magnitudes
for Wd2 and NGC 6397, respectively, and the individual stel-
lar extinctions, so that the condition c has the dimension 3 in
the Wd2 cases and 6 for NGC 6397. Ardizzone et al. (2019b)
also introduce a ’conditioning’ network which transforms the
input condition into some intermediate representation and
is trained jointly with the cINN. We do not use this addi-
tional network in our setup, as we find that given the few
observables in our problem the cINN tends to overfit to the
synthetic training data when employing a feature extraction
network, resulting in poor performance on the real bench-
mark data.

Our cINN consists of 16 conditional affine coupling
blocks, each in the GLOW configuration (Kingma & Dhari-
wal 2018), which reduces computational cost and speeds up
learning by jointly predicting the subnetwork outputs si()
and ti() using a single subnetwork. As in Ardizzone et al.
(2019b) we introduce an additional nonlinear transforma-
tion of the scale coefficients s,

sclamp =
2α
π

arctan
( s
α

)
, (8)

where α = 1.9, so that sclamp ≈ s for |s | � α and sclamp ≈ ±α
for |s | � α, in order to avoid instabilities induced by large

magnitudes of the exponential exp
(
sclamp

)
.

We alternate the conditional affine coupling blocks with
random permutation layers. The latter consist of random
orthogonal matrices which mix the information between the
two streams u1 and u2 in the coupling blocks. Following
Ardizzone et al. (2019b), these matrices are fixed during
training and cheaply invertible. The combination of these
permutation layers with the interlocked affine transforma-
tions of the affine coupling blocks ensures that the network

MNRAS 000, 1–38 (2020)
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – High-Signal Case
▶ Now:

• High-signal, small-background scenerio
▶ Signal:

• Symmetric distribution for sensitive
processes

▶ Well- and weakly-reconstructed
parameters: similar sensitivity

▶ Comparable results to likelihood fit
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Mate Zoltan Farkas
Signal Modifier Inference – Network Losses

▶ Network converges
▶ Summary-Network extended cINN tends to overtrain
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Mate Zoltan Farkas
Morphing

f(x|mi) = f(x|0)︸ ︷︷ ︸
f0

+

T∑
j=1

∂f(x|m)

∂mj

∣∣∣∣
m=0︸ ︷︷ ︸

f ′
j

(mi)j +

T∑
j=1

1

2!

∂2f(x|m)

∂m2
j

∣∣∣∣∣
m=0︸ ︷︷ ︸

f ′
jj

(mi)
2
j +O

(
(mi)

3
j

)

▶ Express the unknown derivatives f ′
j , f ′

jj

▶ 24 templates: 24 shape changing uncertainties
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