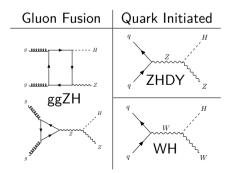


A Method for Inferring Signal Strength Modifiers by Conditional Invertible Neural Networks ACAT Conference 2022 Mate Zoltan Farkas, Svenja Diekmann, Niclas Eich, Martin Erdmann

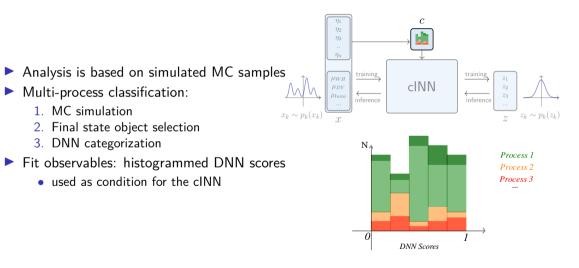
25th October, 2022

Analysis Introduction

- ► Goal: inference of signal strength modifier parameters with cINNs
- Motivation:
 - Posterior inference with cINNs is time-efficient
 - Normalizing flows preserve gradients
- Analysis:
 - Signal processes: ggZH, ZHDY, WH
 - 13 Background processes: DY, VBF ...

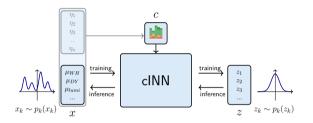


Analysis Strategy and -Setup

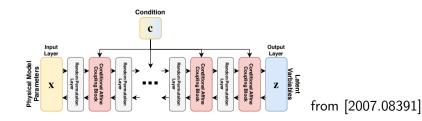


Conditional Invertible Neural Networks - Theory

- ► Fit model posteriors p_φ(x|c) to the true posteriors p(x|c)
- \blacktriangleright Training: Map inputs to a $\mathcal{N}(z|0,1)$
- ▶ Inference: Sampling from $\mathcal{N}(z|0,1)$ and Inversion → posterior



- Network:
 - Affine blocks and permutation layers
 - Conditions \boldsymbol{c} input for each affine block

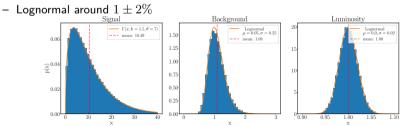


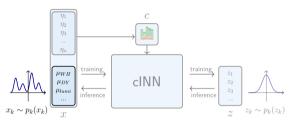
Network Setup – Data Preparation

► Goal: infer signal modifier parameters {µ_i} → dataset contains expected {µ_i} and nuisance parameter effects

Priors:

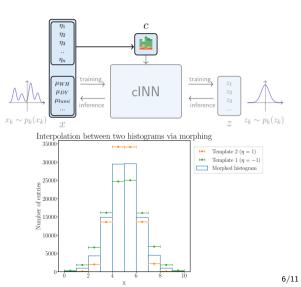
- Signal: Γ(x; k = 1.5; θ = 7)
 → finer sampling around expected μ
- Background:
 - Lognormal with mean $1\pm27\%$
- Luminosity nuisance:





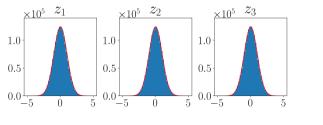
Network Setup – Dataset – Uncertainties

- Statistical uncertainties
 - Expected measurement uncertainty
 - MC sample size
- Systematic effects:
 - Normalizing uncertainties
 - Shape-changing uncertainties
 - \rightarrow Histogram template morphing

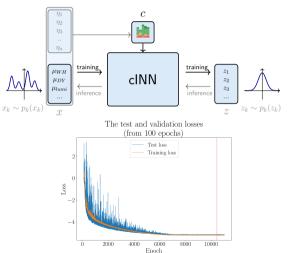


Signal Modifier Parameter Inference – Latent Distributions

- Training: loss converges
- Latent space distribution follows $\mathcal{N}(0,1)$
- Sampling from N(0,1) yields well-approximated posteriors



. . .



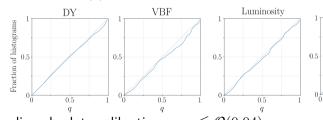
Signal Modifier Parameter Inference – Calibration Curves

Mate Zoltan Farkas

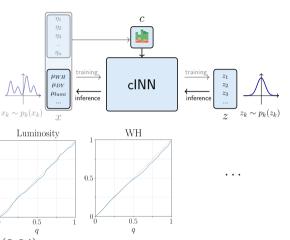
Calibration error: measure of model bias

$$e_{cal}(q) = rac{N^{in}}{N} - q, \qquad q \; \; \mathsf{quantile}; q \in [0,1]$$

- Nⁱⁿ: number of posteriors containing the true MC value in their q quantile
- ▶ Ideal calibration: $e_{cal}(q) = 0$



► Max median absolute calibration error $\leq O(0.04)$ \Rightarrow No strong biases in the network model



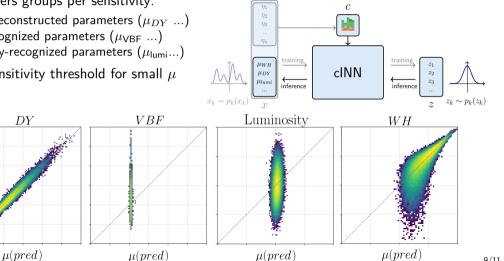
Signal Modifier Parameter Inference – Predictions

Mate Zoltan Farkas

- ▶ 3 parameters groups per sensitivity:
 - well-reconstructed parameters (μ_{DY} ...)
 - unrecognized parameters (μ_{VBF} ...)
 - weakly-recognized parameters $(\mu_{lumi...})$
- \triangleright Signal: sensitivity threshold for small μ

DY

 $\mu(MC)$



10/11

Signal Modifier Parameter Inference – Posteriors (Asimov)

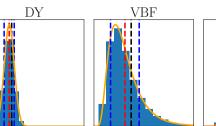
Background (dy, ...):

 $p(\mu|MC)$

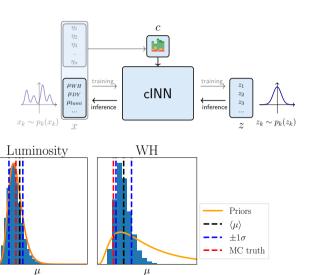
- narrow posteriors = high sensitivity
- ▶ Unrecognized (VBF, ...):

μ

- posteriors = priors
- Luminosity nuisance: weakly recognised
- Signal: highest sensitivity for WH
- Comparable results to likelihood fit



μ



Mate Zoltan Farkas

Conclusion

DY

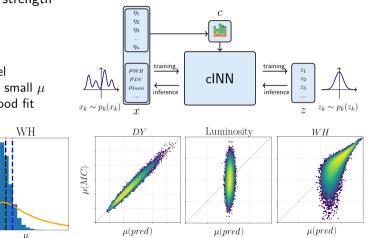
μ

 $p(\mu|MC)$

- cINN is able to infer the signal strength modifiers
- Good prediction performance
 - Latents follow $\mathcal{N}(0,1)$
 - No strong biases in the model
 - Sensitivity drop for signal for small μ
 - Comparable results to likelihood fit

Luminosity

Ц

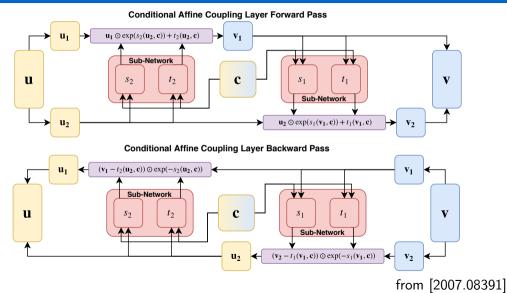


Backup

- $\blacktriangleright \dim c = 235$
- $\blacktriangleright \dim x = 17$
 - 3 signal modifier parameters
 - 13 background modifier parameters
 - 1 nuisance parameter (luminosity)
- ▶ 12 GLOW Blocks with permutation layers
- Subnetworks with 3 layers à 128 nodes with ReLU

The GLOW Coupling Block

Mate Zoltan Farkas



14/11

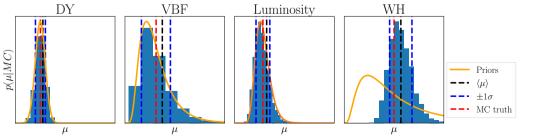
Signal Modifier Parameter Inference – High-Signal Case

Now:

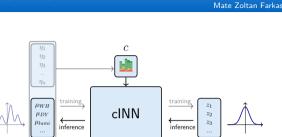
• High-signal, small-background scenerio

Signal:

- Symmetric distribution for sensitive processes
- Well- and weakly-reconstructed parameters: similar sensitivity
- Comparable results to likelihood fit



 $x_k \sim p_k(x_k)$

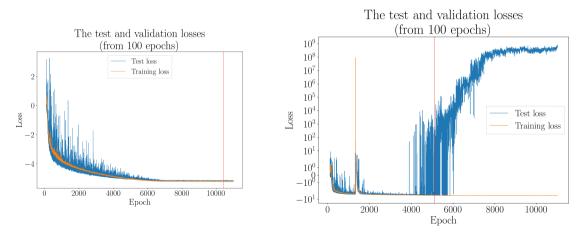


 $z_k \sim p_k(z_l)$

2

Signal Modifier Inference – Network Losses

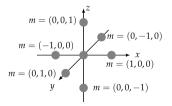
- Network converges
- Summary-Network extended cINN tends to overtrain



Morphing

$$f(x|\mathbf{m}_i) = \underbrace{f(x|0)}_{f_0} + \sum_{j=1}^T \underbrace{\frac{\partial f(x|\mathbf{m})}{\partial m_j}}_{f'_j} |_{\mathbf{m}=0} (m_i)_j + \sum_{j=1}^T \underbrace{\frac{1}{2!} \frac{\partial^2 f(x|\mathbf{m})}{\partial m_j^2}}_{f'_{jj}} |_{\mathbf{m}=0} (m_i)_j^2 + \mathcal{O}\left((m_i)_j^3\right)$$

- Express the unknown derivatives f'_{j} , f'_{jj}
- 24 templates: 24 shape changing uncertainties



$$\begin{pmatrix} f\left(x|(0, 0, 0, ..., 0)\right) \\ f\left(x|(0, -1, 0, ..., 0)\right) \\ \vdots \\ f\left(x|(0, -1, 0, ..., 0)\right) \\ \vdots \\ f\left(x|(0, 0, 0, ..., 1)\right) \\ f\left(x|(0, 0, 0, ..., -1)\right) \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & -1 & 1 \\ 1 & 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix} }_{M} \begin{pmatrix} f_{0} \\ f'_{1} \\ f'_{1} \\ \vdots \\ f'_{T} \\ f'_{TT} \end{pmatrix} \\ f(x|\mathbf{m}) = (1, m_{1}, m_{1}^{2}, ..., m_{T}, m_{T}^{2}) M^{-1} \mathbf{f}$$