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1. Hyperparameter optimization
Training and hyperparameter optimization (HPO) of DL-based AI models is often compute
resource intensive and calls for the use of large-scale distributed resources as well as scalable
and resource efficient HPO algorithms [1]. Current state-of-the-art HP search algorithms such
as Hyperband [2], ASHA [3] and BOHB [4] rely on a method of early termination, where badly
performing trials are automatically terminated to free up compute resources for new trials to
be started.

The stopping criterion, based on the ranking
of trials according to a chosen metric, usually
accuracy or loss, can be problematic. Since
the training process is non-linear, the ranking
of trials at the decision point does not neces-
sarily hold at the target point. A potential
solution to this problem is to use a non-linear
stopping criterion, e.g. using Support Vector
Regression (SVR) to predict the final model
performance from a partially trained model
[5].

HPO using algorithms such as ASHA is especially suited for large-scale HPC since greater than
linear scaling can be achieved, as seen in tests at the Jülich Supercomputer Centre (JSC).

2. Quantum-SVR for model performance prediction
The potential to speed up the HPO process via performance prediction as well as the use of a
quantum annealer (QA) to train the performance predictor is investigated. QSVR performance
comparable to a classical SVR is obtained.

A GNN-based algorithm, developed for the task of machine learned particle flow reconstruction
in HEP [6, 7], acts as the base model for which studies are performed. A dataset consisting of
learning curves and HP configurations was generated by training 296 different configurations
of MLPF on the publicly available Delphes dataset [8].

Hyperparameter space for dataset generation

To establish a baseline, classical SVR was studied by fitting 1000 models on different train/test
splits with the same constraint on dataset size as required by the QSVR training of 20 samples.
Results vary depending on the training split and statistics are shown in the figure and table
below.

Via CoE RAISE, access to JUPSI, a QA at the Jülich Supercomputer Centre, was leveraged to
train a QSVR model for performance prediction. Due to the probabilistic nature of quantum
processes the annealing is run multiple times and returns multiple solutions which can then be
combined in several different ways to crate the final QSVR model.

R2 scores
Number of

Best Worst Mean Std trainings

SVR 0.959 0.318 0.889 0.050 1000
Sim-QSVR 0.949 0.383 0.901 0.045 100
QSVR 0.948 0.742 0.880 0.056 10
QSVR Ensemble 0.927 0.857 0.899 0.019 10

QSVR predictions in test set

The predictions of the best performing QSVR
are plotted against the true values in the fig-
ure above. A summary of the performance of
different QSVR combination methods is show
in the figure to the right. The methods used
are described in [9]. Results are compara-
ble to classical SVR models when trained on
datasets of the same size.

With the aim of stabilizing QSVR perfor-
mance, as well as to increase the effec-
tive training set size, four separate QSVR
models were trained on disjoint training
sets of 20 samples each. Although this
approach did not improve the maximum
R2 score, it did produce more stable re-
sults by significantly improving the worst

performing split and reducing the stan-
dard deviation of R2 scores between splits.

3. Containerized AI benchmark
The promise of better accuracy and reconstruction scalabil-
ity at inference time for AI-based algorithms is preceded by
resource-intensive training. We propose a self-contained, re-
producible benchmark based on the training of DL models
to explore the feasibility of deploying AI-driven HEP appli-
cations to different HPC environments. The metric shown
is the training throughput on a subset of the public Delphes
dataset [8] in HEPscore [10] format.
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4. Conclusions
HPC systems are essential for large-scale hypertuning and
distributed training and can significantly increase model
performance as well as speed up the iteration of model
development and training. We have seen that, in this case
of hypertuning using Ray Tune, greater than linear scaling
in speed-up to number of nodes can be achieved, indicating
the benefits of HPC for such use-cases. The current work is
limited by resource constraints imposed by supercomputer
centers on the maximum number of compute nodes that
individual users are allowed to access at any one time.

The strong potential of using performance prediction tech-
niques for HPO was demonstrated, leaving the door open
for the use of this technique in later HPO studies. It was
also shown that, despite the current limitations of quantum
computers, it is possible to train SVR models on a quantum
annealer while achieving prediction performance comparable
to those obtained on a classical SVR. This encourages
further studies in utilizing hybrid Quantum/HPC workflows
for HPO as well as in other use-cases.

Finally, the development of a containerized benchmark ap-
plication with an AI use-case from HEP allows for quick and
easy benchmarking of new hardware accelerators in the HEP-
Score format.


