
ACAT 2022

Reconstructing Particle Decay Trees 

with Quantum Graph Neural Networks in High Energy Physics

Melvin Strobl, Eileen Kühn, Max Fischer, Achim Streit

Particle Decay Trees

Quintessence

An exemplary decay tree with

two intermediate decay

products and five stable

particles which originates from

a root particle. 

Each decay is assumed to

result in at least two children

and the number of detected

particles is exact. 

Furthermore no measurement

errors are assumed.

Input: Feature matrix with the

four-momentum , ,  and 

 for each Final State Particle

(FSP) . 

Target: Lowest Common

Ancestor Generation (LCAG) [1]

matrix. Each entry represents

the number of generations to

go back in the decay tree until

a common node is present

The synthetic dataset consists of

decay events generated using the

phasespace library [6]. 

Each event is represented by the

four-momenta of the FSPs (input) and

the structural properties of the decay

tree (label). 

The complexity of the dataset is

controlled by the following

parameters as introduced in [1]: 

 - MAX_CHILDREN: Maximum number

of childs for each node 

 - MIN_CHILDREN: Minimum number

of childs for each node 

- MAX_DEPTH: Maximum number of

generations within the tree

 - N_TOPOLOGIES: Number of

different topologies (constraint by the

above parameters) 

 - N_EVENTS_PER_TOP_[mode]:

Number of events generated for each

topology and for each mode (training,

validation and test) 

The total number of FSPs and the

number of available classes are being

used to create the model. 

The latter is subject to structural

parameters including classical ones

(e.g. feedforward dimension and

dropout rate) but also quantum

exclusive parameters (e.g. data

reupload and measurement

interpretation).

Neural Relational Inference (NRI) Encoder in form of a Graph Neural Network Neural

Network (GNN) from [2] where the classical input layer is being extended by the quantum

equivalent, the so called Quantum Multi Layer Perceptrons (QMLP).

Ansatz

The overall circuit in training iteration  is described as a composition of the Input Encoding Circuit (IEC)

and the Parameterized Quantum Circuit (PQC) as: 
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Loss: Cross-Entropy with a mask for "-1" classes representing the diagonal entries and invalid leaves. 

Accuracy: Three different accuracy metrics are applied. 

1. Counting only perfect reconstructions of the LCAG matrix ("perfect_lcag_accuracy") 

2. Counting true and false classifications of edges/ parent generations ("accuracy") 

3. Same as 2. but with a processing where logical mistakes of the tree are corrected ("logic_accuracy")

IEC and PQC in Detail

QMLPs within the GNN

Parameter updates within the PQC are received by the gradient calculation according to the parameter

shift rule  [5] and backpropagation. The PQC itself can take

various forms and is described explicitly in the following sections.

This approach was evaluated as it appeared intuitive to replace the classical MLP layers with quantum

equivalents. Hereby, the QMLP shown above takes the same input as the classical MLPs in the GNN.

However, due to the size of the GNN, the number of parameters of sufficiently large QMLPs (e.g. "Circuit

19" [7]) exceeds that which can be optimized during a reasonably long training. 

Therefore it was decided to not further investigate in this approach. 

IEC

Interpretation of the measurement outcome: 

Measuring a  qubit system yields  values for the

pseudo-probabilities of each combination of the qubits

being either in the  or  state. While using the

pseudo-probabilities of single qubits is usefull for

classification tasks, it disregards the entanglement

properties of the states. 

Therefore probabilities for the individual qubits are

filtered and used to build up and  matrix

which is used as input to the GNN. 

$$ 

\newcommand{\ket}[1]{\vert#1\rangle} 

\newcommand{\bra}[1]{\langle#1\vert}

\newcommand{\braket}[2]{\langle #1\vert #2\rangle}

\newcommand{\ketbra}[2]{\vert #1\rangle \langle #2\vert}

\newcommand{\trace}[1]{\mathrm{Tr}\left(#1\right)}

\newcommand{\expect}[1]{\langle#1\rangle}

\newcommand{\abss}[1]{\vert#1\vert^2}

\newcommand{\set}[1]{\{#1\}}

\newcommand{\lt}{<}

\newcommand{\gt}{>}

$$

Baseline Comparison

The approach presented in [1] and the results of the classical training serve as a baseline. The GNN is

re-implemented and trained on the same amount of data as the hybrid approaches above. The model

has 147395 parameters and is manually tuned on the reduced dataset. 

The slightly better

validation metrics indicate

a good generalization

capability. 

On the validation data, the

perfect LCAG score is 0.529

and the logic accuracy

0.845. 

On an extended dataset, a

validation accuracy of

0.985 and a validation loss

of 0.008 is achieved. 

Due to the significantly longer evaluation time, experiments

were conducted on a smaller dataset [4] with the

parameters: MAX_CHILDREN=3, MIN_CHILDREN=2,

MAX_DEPTH=3, N_TOPOLOGIES=5,

N_EVENTS_PER_TOP_[train., val.]=[100,30]. This setting

yields a maximum number of FSPs of 

(exponential tree), although the constraints regarding the

masses yields an effective number of . 

Gradients were tuned using the ADAM optimizer in

conjunction with learning rate scheduling. 

The model is implemented in PyTorch and Qiskit [3]. 

It features 3 VQC layers which contribute to the total 38317

parameters of the hybrid model. 

Mini-Batch training with a batch size of 8 in the classical-

and 4 in the hybrid model training.

The PQC follows a an entangling approach as in [7]. Additional rotational gates can be added optionally

to increase the number of parameters scaling so that it scales with . 

 

where the parameterizable matrices  describing controlled gates with the sames properties as

the solely rotational gates. They are assumed to match the number of qubits , i.e. are tensored with

the identity matrix of an appropriate size.  

Only  and  types are being as they are sufficient to cover the area of the Bloch Sphere.

Alternatively, "Circuit 19" [7] is evaluated as PQC. In comparison, the latter has fewer parameters as the

 and  gates are omitted. 
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Comparison: QMLP + MLPs

In a different approach, the

quantum circuit was

evaluated with series of

simple MLP layers instead

of the GNN [1]. 

It was found that despite

the competitive accuracy

and loss, the generalization

is not as good as in the

approach including the

GNN. Both approaches are

set to have a similar

number of parameters,

while the QMLP has more

parameters within the PQC. 
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Validation on real Quantum Devices

After training the model in simulation using classical devices, validation was carried out on a 7-qubit 

Noisy Intermediate Scale Quantum (NISQ) device (ibm_perth) from IBM. This experiment should verify if

an application on real quantum devices is already feasible and should give a hint on the generalization

capability of the trained model. The following metrics have been measured: 

val_loss:0.235, val_accuracy:0.655, val_logic_accuracy:0.655, val_perfect_lcag:0.404. 

As expected, the scores are much lower in comparison to the ideal simulated circuit, which is mainly

caused by the inherent noise, but also due to the transpilation process, where the circuit is being

translated into a smaller set of gates and adapted to the device specific topology. 

The model achieves a

validation loss of 0.147 and

0.827 validation accuracy. 

On the validation data, the

perfect_lcag score is 0.596

and the logic_accuracy

0.827. 

It was observed that the

model is very sensitive to

the learning rate. 

The VQC with "Circuit 19"

showed a slightly lower

performance. 

Data Reuploading improved

the performance

significantly.

Learnable parameters 

in a PQC control the

rotation of spin and

phase of a qubit as well

as the entanglement

between them. 

Each layer within a

QMLP represents a new

PQC and, in case of data

reuploading also an IEC. 

Dataset and Model Parameters

The approach in which the GNN is enhanced by a QMLP is able to surpass the purely classical

experiment on the perfect LCAG score. 

Furthermore, the accuracy and logic accuracy score as well as the loss can be considered being very

competetive. Especially in regards on the parameters, the quantum part seems to approve the overall

perfomance significantly. 

This can also be seen when comparing the hybrid approach to a classical one where the number of

parameters is similar. In this scenario, all metrics are significantly surpassed by the hybrid approach. 

However, validation on a real quantum computer decreases e.g. the perfect LCAG score by almost 20%.

This drawback motivates further research towards noise resilient approaches which hopefully also

improve the accuracy on noise prone input data. 

It should be noted that the much longer training time, access limitations to real quantum devices, and

limited scalability of this approach will not make real-world application feasible in the near future, but

rather help build an understanding and intuition of quantum technologies. 

When the number of parameters of the GNN is reduced to a similar size as in the hybrid approach, the

metrics drop to 0.809 accuracy, 0.796 logic accuracy, a perfect LCAG score of 0.385 and loss of 0.129

on the validation dataset 
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The FSPs are split across the qubits while their features are embedded in different type of gates as

described in the following equation for a single qubit in the IEC. 

 

The underscore  is indicating one of the three rotational axis ,  and . 


