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Track reconstruction is essential to many physics reconstruction tasks!

• The HL-LHC demonstrates the need for new tracking algorithms with reduced 

latency and improved performance in high-pileup environments [1].

• Traditional Kalman filter-based algorithms scale poorly with detector occupancy.

• Enforcing expected equivariance is a proposed technique to decrease model 

size while maintaining performance.

• Our work focuses on rotation-equivariant edge-classifying GNNs

• We explore the rotation groups, specifically SO(3) and SO(2) symmetry groups. 

• TrackML [2]: ACTS simulated  collision events with ~200 pileup 
interactions. 


• Each event contains 3D hit position  and truth information about the 
particle that generated them. 


• We only include hits generated in the pixel layers in the innermost region of the 
tracker. 


• 3 filters applied to the dataset:

• A  filter to reject hits generated by particles with 

• Noise filter to reject noise hits

• Same-layer filter to ensure only one hit per particle per layer


• Graph constructed by mapping hits to nodes and edges to possible track 
segments

• Node features are 3D hit positions

• Edge  constructed if it satisfies constraints on the geometric quantities 
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Link to code

[1] https://arxiv.org/abs/1810.06111

[2] https://zenodo.org/record/4730167

[3] https://arxiv.org/abs/2103.16701

Dataset

• To enforce equivariance, the exchanged messaged must be constructed 
using equivariant information. 


• Our architecture, EuclidNet, consists of repeating equivariant blocks (EB).

• Two variants are developed: SO(2) and SO(3), for each of the symmetry group 

being studied. 


• Depending on which quantities are pooled and passed to the decoding MLP, 
the output can be chosen to be equivariant or non-equivariant
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SO(3) EuclidNet
n_hidden = 8 n_hidden = 16

Model # 
Parameter

ss

AUC Efficiency Purity # 
Parameters AUC Efficiency Purity

EN 780 0.9439 ± 
0.002

0.8684 ± 
0.011

0.9551 ± 
0.028 2580 0.9547 ± 

0.004
0.8398 ± 

0.024
0.9453 
± 0.041

IN 1432 0.9849 ± 
0.006

0.9314 ± 
0.021

0.7319 ± 
0.052 4392 0.9932 ± 

0.004
0.9575 ± 

0.019
0.8168 ± 

0.073

Experiments

• The Interaction Network (IN) from [3] is used as our benchmark. 

• We systematically vary the different hyperparameters (HP) using the Weights & 

Biases API, and select the best HP set. 

• To demonstrate the effect of model size, we study models with two different 

hidden channel dimensions: 8, and 16.

• To compare model performance, we track the model's ROC AUC (area under 

the curve), efficiency, and purity. The efficiency and purity are defined as: 

Efficiency = TP/(TP + FP)

Purity = TP/(TP + FN)

We run an equivariance test to measure the robustness of the baked-in 
symmetries.

 For model M, and rotation matrix , plot as a function of 
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Conclusions
In this study, we applied a Euclidean rotation-equivariant GNN to the 
particle tracking problem. An SO(3)-equivariant model performed poorly 
and was unable to compete with the baseline IN. The SO(2)-equivariant 
model offers a marginal improvement (AUC = 0.9913) over the current 
SOTA benchmark (AUC = 0.9849) at small model scales (< 1000 
parameters), but the results are within one standard deviation of each 
other. More work is needed to concretely establish the reasons for this 
result. Possible future directions of work include studying the problem’s 
equivariance and identifying non-equivariant facets, if any, as well as 
investigating the quality of the learnt symmetry. However, if the dataset 
inherently contains non-equivariant features, any symmetric model will 
always underperform. Models which partially relax the constraints imposed 
by symmetry groups might be able to learn the non-equivariant aspects of 
the tracking dataset. 

SO(2) EuclidNet
n_hidden = 8 n_hidden = 16

Model # 
Parameter

ss

AUC Efficiency Purity # 
Parameters AUC Efficiency Purity

EN 957 0.9913 ± 
0.004

0.9459 ± 
0.022

0.7955 ± 
0.040 2580 0.9932 ± 

0.003
0.9530 ± 

0.014
0.8194 
± 0.033

IN 1432 0.9849 ± 
0.006

0.9314 ± 
0.021

0.7319 ± 
0.052 4392 0.9932 ± 

0.004
0.9575 ± 

0.019
0.8168 ± 

0.073

We see that the SO(3) symmetry is too restrictive — the model is unable to compete 

with the baseline

SO(2) EN marginally better than the IN at small scales! It also uses fewer 
parameters!
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