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Track reconstruction is essential to many physics reconstruction tasks! e To enforce equivariance, the exchanged messaged must be constructed SO(3) EuclidNet
e [he HL-LHC demonstrates the need for new tracking algorithms with reduced using equivariant information. Cdden 8 e 16
latency and improved performance in high-pileup environments [1]. ® Our architecture, EuclidNet, consists of repeating equivariant blocks (EB). _ _
e Traditional Kalman filter-based algorithms scale poorly with detector occupancy.  ® Two variants are developed: SO(2) and SO(3), for each of the symmetry group Model Paraﬁ,eter AUC | Efficiency| Purity Para:,eters AUC | Efficiency | Purity
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® \\Ve explore the rotation groups, specifically SO(3) and SO(2) symmetry groups. (v i+ 1|
Pt S e We see that the SO(3) symmetry is too restrictive — the model is unable to compete
D= E’b with the baseline
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® Fach event Contalns 3D hit position (x, y, z) and truth information about the . B _
particle that generated them. \ / 4 SO(2) EN malrglnally better than the IN at small scales! It also uses fewer
e \We only include hits generated in the pixel layers in the innermost region of the R R g R R parameters!
tracker. x ’ ’ d _
e 3 filters applied to the dataset: [ J mp [ | sum Pooling EucldeanNorm, [ Jwe [ sumooing ([l Eocicean Nom, iner Provuc COnCI USIONS
e A pminfilter to reject hits generated by particles with p, < pn
e Noise filter to reject noise hits mé- = ¢, <1//(<x}, le>), (|| x! - le| \2)> mlﬁ = ¢, (vf(<x X)), w(|x = x; 1), s/, s, eé) In this study, we applied a Euclidean rotation-equivariant GNN to the
e Same-layer filter to ensure only one hit per particle per layer l A =l S g oml) - (= xh particle tracking problem. An SO(3)-equivariant model performed poorly
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® Graph constructed by mapping hits to nodes and edges to possible track | - JEIN] and was unable to compete with the baseline IN. The SO(2)-equivariant
segments st = 5!+ (s, ) m) model offers a marginal improvement (AUC = 0.9913) over the current
® Node features are 3D hit positions JEIN] SOTA benchmark (AUC = 0.9849) at small model scales (< 1000
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o Edge ¢;; constructed if it satisfies constraints on the geometric quantities = ) parameters), but the results are within one S_t_aﬂ?'ard deviation of each
G — % - hi— ® Depending on which quantities are pooled and passed to the decoding MLF, other. More Iwork N neepled .tO Concretely establish thg reasons for thls,'
20 =2 — I, and @gj,p. = . . o result. Possible future directions of work include studying the problem’s
r—1; b r—r; the output can be chosen to be equivariant or non-equivariant . . . L .
l l equivariance and identitying non-equivariant facets, it any, as well as
investigating the quality of the learnt symmetry. However, It the dataset
Expenments iInherently contains non-equivariant features, any symmetric model will

always underpertorm. Models which partially relax the constraints imposed
oy symmetry groups might be able to learn the non-equivariant aspects of

® The Interaction Network (IN) from [3] is used as our benchmark. We run an equivariance test to measure the robustness of the baked-in the tracking dataset.
® \\Ve systematically vary the different hyperparameters (HP) using the Weights & symmetries.
Biases API, and select the best HP set. For model M, and rotation matrix Ry, plot € = | R,(M(x)) — M(R,(x)) | as a function of
® [0 demonstrate the effect of model size, we study models with two different 0. Interaction Network SO(2) EuclidNet SO(3) EuclidNet 1] https://arxiv.org/abs/1810.0611"
hidden channel dimensions: 8, and 16. N e 2] https://zenodo.org/record/4730167
® [0 compare model performance, we track the model's ROC AUC (area under N ’Y\ | WM 3] https://arxiv.org/abs/2103.1670
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