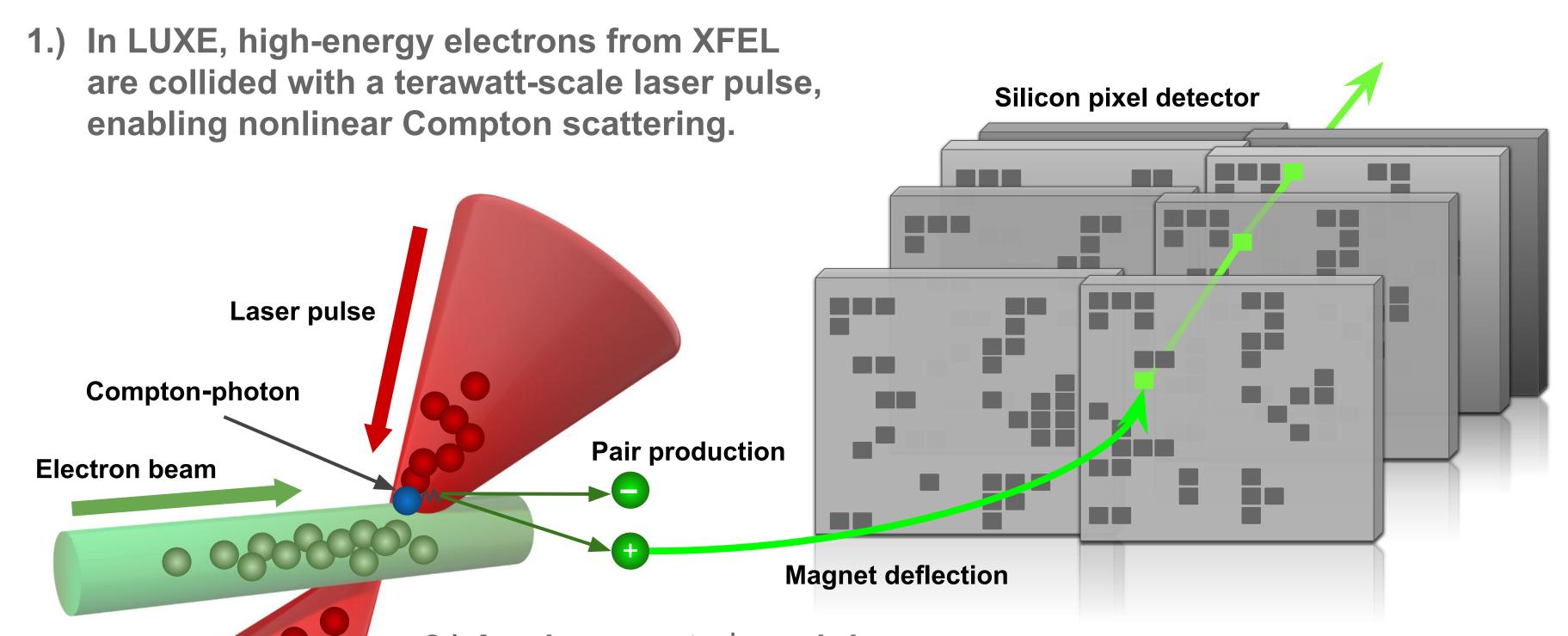
Positron Track Reconstruction for LUXE using a Quantum Computer

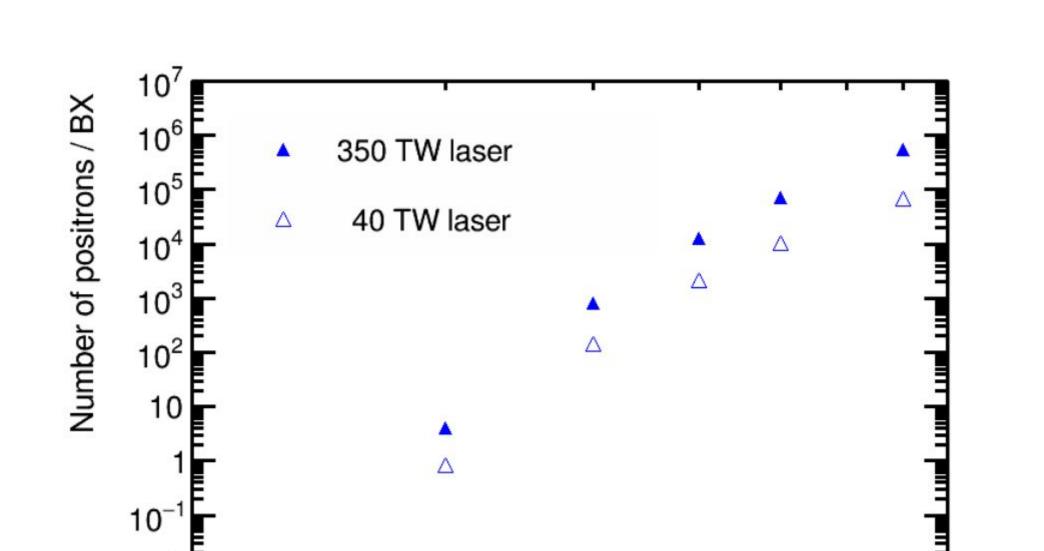
Arianna Crippa^{1,5}, Lena Funcke², Tobias Hartung³, Beate Heinemann^{1,4}, Karl Jansen^{1,5}, Annabel Kropf ^{1,4}, Stefan Kühn¹, Federico Meloni¹, **Tim Schwägerl**^{1,5}, David Spataro^{1,4}, Cenk Tüysüz^{1,5}, Yee Chinn Yap¹

¹Deutsches Elektron-Synchrotron DESY ⁴Albert-Ludwigs-Universität Freiburg

²Massachusetts Institute of Technology, MIT ³Northeastern University, London ⁵Humboldt-Universität zu Berlin







2.) A subsequent e⁺e⁻ pair is created via Breit Wheeler pair creation.

Positrons then impinge on a four-layered Silicon pixel detector.

3.) One goal is to measure the positron rate as a function of the laser intensity parameter

$$\xi = rac{m_e \epsilon_L}{\omega_L \epsilon_{cr}}$$
 m_e : electron mass ω_L : laser frequency $\epsilon_{l,cr}$: laser/critical field strength

4.) LUXE aims to investigate the transition into the high-energy, non-perturbative regime of QED.

Theoretically, a *lower* positron production rate is expected after the critical field is reached compared to perturbative predictions.

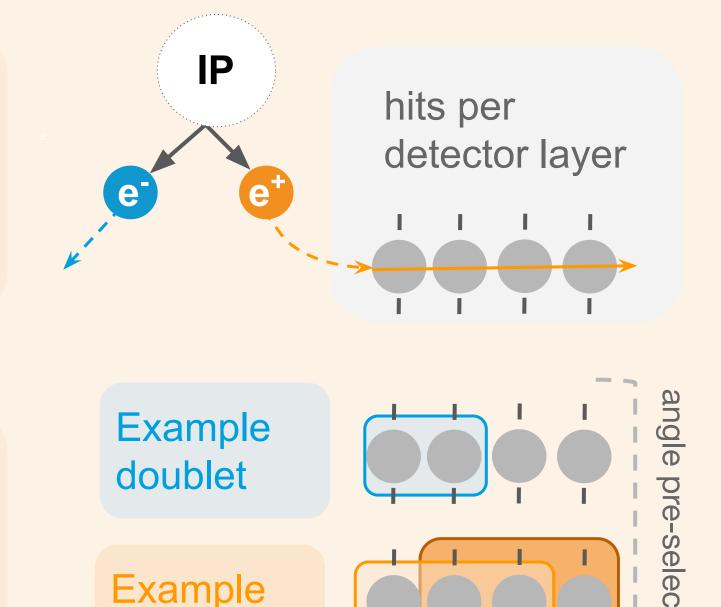
LUXE Model Building.

Monte Carlo generated event samples

into doublets

custom detector simulation

Two doublets form one triplet



The ground state of the QUBO returns the best set of triplets.

Quantum Simulator. The QUBO is mapped onto a quantum computer (here: simulator) and minimized using the Variational Quantum Eigensolver (VQE). Additionally, the QUBO is analytically solved using the eigensolver.

Goal. Benchmark performance against conventional methods using Graph Neural Network (GNN) or a Combinatorial Kalman Filter.

Results. Efficiency and fake rate are compared for full bunch crossings of up to \sim 68 000 particles for ξ =7.

Triplets as QUBO input.

Quadratic **Unconstrained Binary Optimisation**

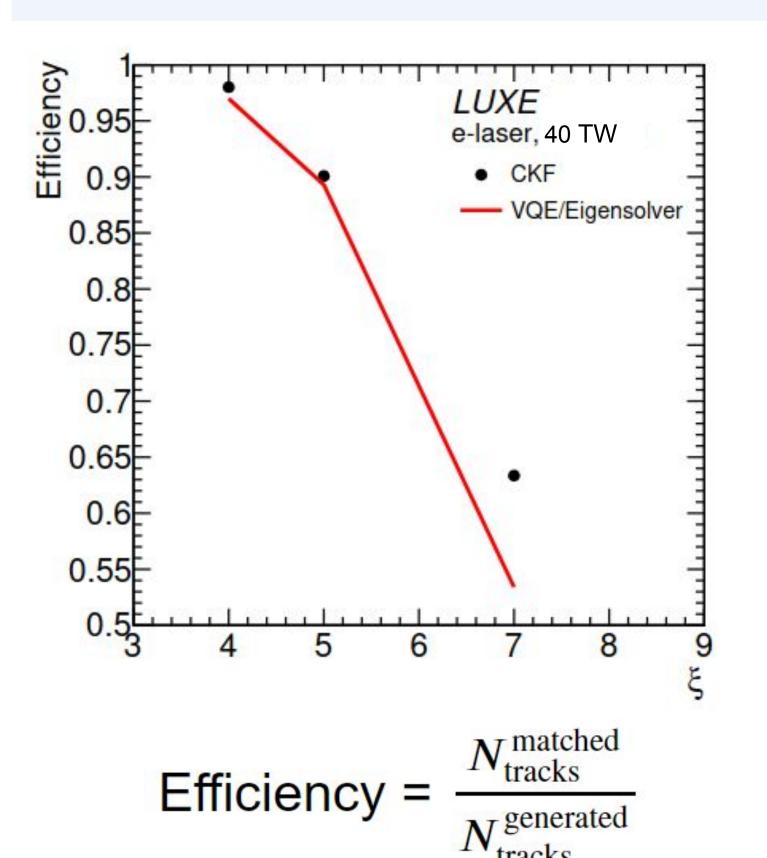
$$O(a,b,T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0,1\}$$

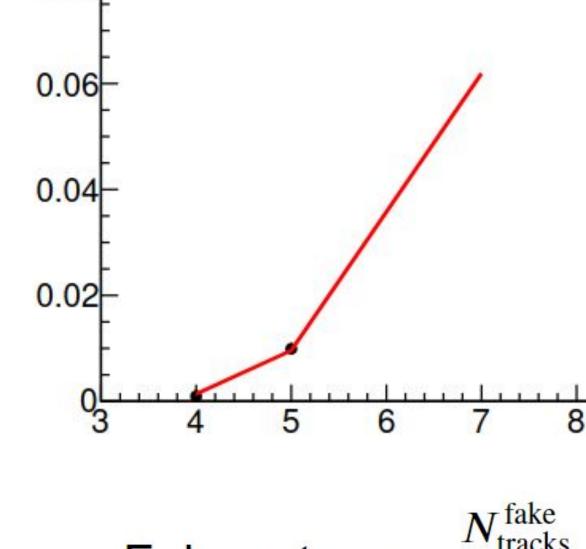
Weighting triplet T_i with quality a

Compatibility b... between two triplets

triplets

$$b_{ij} = \begin{cases} -S(Ti, Tj), & \text{if } (T_i, T_j) \text{ form a quadruplet,} \\ \zeta & \text{if } (T_i, T_j) \text{ are in conflict,} \\ 0 & \text{otherwise.} \end{cases}$$





e-laser, 40 TW

VQE/Eigensolver

Fake rate =
$$\frac{N_{\text{tracks}}^{\text{fake}}}{N_{\text{reconstructed}}^{\text{reconstructed}}}$$

Key questions.

- How does the performance depend on ξ?
- What are the quantum computer requirements to run efficiently?
- How does quantum noise affect the results?
- What quantum algorithm is optimal?
- How does the choice of quantum computer affect the results?

tim.schwaegerl@desy.de