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Charged Particle Identification @ Belle | Validation
* Belle ll is located at thg asymmetr_ic energy ete” superKEKB collider in + Validation studies on simulated BB decays.
Tsukuba Japan, collecting data primarily at the Y(4S5) resonance. » Busy environment — test performance and ability to generalize onto
. nghl_y performant particle identification is a key requirement for the flavor shysics samples.
physics program. 0 Belle Il Simulation Belle Il Simulation
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» Simple global calibration weights significantly improve e*/n* and K% /n®
separation at a cost of degraded u* /m* separation.

* The likelihoods are combined into global particle identification scores via a
likelihood ratio:

hiD =

exp(log Lp)
Zh exp(log Lh),

log Ly = ZDet log Lh,Det
Improving the Likelihoods

The Blame Game

Constant development to improve

likelihood definitions for both calibration
To evaluate the impact of each sub-detector, consider a separation score and performance.

via an ablation test. S |
« Lepton identification relies on ECL

Ikelihoods based on E /p distributions —
powerful variable at high momentum
nowever the separation ability degrades
at low momentum.

Calculate the difference in the overlap between the probability density
function of simulated pure signal and background samples in the particle
ID scores when considering all sub-detectors or all minus one sub-
detectors.
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The score Is bound between [-1, 1]. A negative score indicates that
Including the sub-detector improves the performance, a positive score

that it degrades the performance. * The shape of energy depositions differs for each particle species. This can

| | be exploited for additional separation power.
ldentify poorly performing sub-detectors and target for development.
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. 20 _ 20 . * Expand on the scheme of [1]. Train boosted decision trees in 18 (p, 6, q)
Forward Region Barrel Region Backward Region no SVD

10 10 no CDC regions on simulated single particle samples considering E /p, high level
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"o ARICH shower shape variables (Zernike moments, ...) and per crystal quantities.
-10 e no ECL Convert BDT response to likelihood to integrate into global likelihood
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ARICH, TOP and 30 . scheme.
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SES;?SE;‘F"”"”*’“’” s . . Reduces  — e, m — u fake rates for ECL only identification by 55% and

STy 0 e e e, B0 e 31% respectively at low momentum (< 1.0GeV) for BE Samples.
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» Over/under confident sub-detectors degrade the particle ID performance. & ¢ L 08
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* Weights are obtained with a neural network (TORCH), optimized to T ?
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Loss(¥,y) = CrossEntropy(y, y) P [GeV] P [GeV]
+ [ BinaryCrossEntropy(V,;, ¥rr)
Weight Matrix * Ongoing development to complement human engineered shower shape
variables to machine learned variables via convolutional neural networks [2].

log Z,

Pions are the most
abundant particle
species.

Add a pion specific loss : : COnCI usIion

to maintain low pion

fake rates, § = 0.1. » Simple calibration weights improve the performance of the Belle Il global

likelihood scheme for charged particle identification.

ARICH

o8 £, * Welights trained on simulated single particle samples are generalizable to
complex BB environments.

KLM

* Inclusion of shower shape describing variables into ECL likelihoods via
boosted decision trees significantly improves lepton — hadron separation.
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