
Calibrated Particle Identification for Belle II

Charged Particle Identification @ Belle II

• Belle II is located at the asymmetric energy 𝑒+𝑒− superKEKB collider in 

Tsukuba Japan, collecting data primarily at the Υ(4𝑆) resonance.

• Highly performant particle identification is a key requirement for the flavor 

physics program.

• Six sub-detectors provide likelihoods for tracks that traverse them for each 

of the final state charged particle hypothesis: ℎ ∈ {𝑒±, 𝜇±, 𝜋±, 𝐾±, 𝑝±, 𝑑±}.

𝐾𝐿
0/𝜇 Detector (KLM)

Silicon Vertex Detector (SVD)

Electromagnetic Calorimeter (ECL)

Central Drift Chamber (CDC)

Aerogel Ring Imaging Cherenkov counter (ARICH)

Time of Propagation (TOP)

• The likelihoods are combined into global particle identification scores via a 

likelihood ratio:

ℎID =
exp(log ℒℎ)

σℎ exp(log ℒℎ)
, log ℒℎ = σDet log ℒℎ,Det
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Validation

Calibration

• Over/under confident sub-detectors degrade the particle ID performance.

• Introduce per sub-detector, per hypothesis weights (𝑤ℎ,Det):

log ℒℎ → log ሚℒℎ = σDet𝑤ℎ,Det log ℒℎ,Det

• Weights are obtained with a neural network (TORCH), optimized to 

minimize:

Loss ො𝑦, 𝑦 = CrossEntropy ො𝑦, 𝑦
+𝛽BinaryCrossEntropy( ො𝑦𝜋, 𝑦𝜋)

Pions are the most 

abundant particle 

species.

Add a pion specific loss 

to maintain low pion 

fake rates, 𝛽 = 0.1.

• Validation studies on simulated 𝐵𝐵 decays.

• Busy environment – test performance and ability to generalize onto 

physics samples.

The Blame Game

• To evaluate the impact of each sub-detector, consider a separation score 

via an ablation test.

• Calculate the difference in the overlap between the probability density 

function of simulated pure signal and background samples in the particle 

ID scores when considering all sub-detectors or all minus one sub-

detectors.

• The score is bound between [-1, 1]. A negative score indicates that 

including the sub-detector improves the performance, a positive score 

that it degrades the performance.

• Identify poorly performing sub-detectors and target for development.

Conclusion

• Simple global calibration weights significantly improve e±/𝜋± and 𝐾± /𝜋±

separation at a cost of degraded 𝜇± /𝜋± separation.  

• Simple calibration weights improve the performance of the Belle II global 

likelihood scheme for charged particle identification.

• Weights trained on simulated single particle samples are generalizable to 

complex 𝐵𝐵 environments.
•

• Inclusion of shower shape describing variables into ECL likelihoods via 

boosted decision trees significantly improves lepton – hadron separation.
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Improving the Likelihoods

• Constant development to improve 

likelihood definitions for both calibration 

and performance.

• Lepton identification relies on ECL 

likelihoods based on 𝐸/𝑝 distributions –

powerful variable at high momentum 

however the separation ability degrades 

at low momentum.

Weight Matrix

ARICH, TOP and 

SVD(𝑝 > 1GeV)
degrade electron-pion 

separation!

Pion to signal fake rate

𝒆 𝑲

𝝁

• The shape of energy depositions differs for each particle species. This can 

be exploited for additional separation power.

• Expand on the scheme of [1]. Train boosted decision trees in 18 (𝑝, 𝜃, 𝑞)
regions on simulated single particle samples considering 𝐸/𝑝, high level 

shower shape variables (Zernike moments, …) and per crystal quantities. 

Convert BDT response to likelihood to integrate into global likelihood 

scheme.

• Reduces 𝜋 → 𝑒, 𝜋 → 𝜇 fake rates for ECL only identification by 55% and 

31% respectively at low momentum (< 1.0GeV) for 𝐵𝐵 samples.

• Ongoing development to complement human engineered shower shape 

variables to machine learned variables via convolutional neural networks [2].
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