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Direct detection of light DM-nucleus 
scattering

● earth based detector in underground 
lab,

● monocristalline target,
● superconducting thermometer,
● operation at O(mK) temperature;
● DM recoils produce phonons, 

thresholds down to O(10 eV).  
● Careful optimization of the heating 

(DAC) and the bias current (IB) of the 
thermometer are required.

● Standard approach is time 
consuming and requires manual 
interventions.
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Direct detection of light DM-nucleus 
scattering

● earth based detector in underground 
lab,

● monocristalline target,
● superconducting thermometer,
● operation at O(mK) temperature;
● DM recoils produce phonons, 

thresholds down to O(10 eV).  
● Careful optimization of the heating 

(DAC) and the bias current (IB) of the 
thermometer are required.

● Standard approach is time 
consuming and requires manual 
interventions.

● For future large-scale setups this task 
needs to be automated.



A framework for policy optimization:

Action Observation 
and Reward 

Environment

Agent
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function that maps state 
to probability distribution 

over actions

Maximizing rewards 
over time (returns) 
is what we want!

receives state, takes 
action according to policy

defines the transitions 
between states according 

to internal dynamics

This is called a Markov 
decision process! 



A framework for policy optimization: hire a Phd student

Environment

Agent
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I just want to 
get high 

rewards …

Action Observation 
and Reward 



A framework for policy optimization: reinforcement learning

I just want to 
get high 
rewards!

Environment

Agent
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Action Observation 
and Reward 



A framework for policy optimization: reinforcement learning

I just want to 
get high 
rewards!

Environment

Actor

Critic

Let me check 
those values 
for you!  

Soft actor critic (SAC)
https://arxiv.org/abs/1801.01290v2
Stable baselines 3 implementation
https://jmlr.org/papers/volume22/20-1364/20-1364.pdf

2 neural networks

Action Observation 
and Reward 

https://arxiv.org/abs/1801.01290v2
https://jmlr.org/papers/volume22/20-1364/20-1364.pdf


OpenAI Gym - A framework for reinforcement learning
https://www.gymlibrary.dev/

https://www.gymlibrary.dev/


Examples of reinforcement learning in physics

Nature 602, 414–419 (2022).
https://doi.org/10.1038/s41586-021-04301-9

Phys. Rev. Accel. Beams 24, 104601 - 104618 (2021).
https://doi.org/10.1103/PhysRevAccelBeams.24.104601

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1103/PhysRevAccelBeams.24.104601
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Why reinforcement learning?

Isn’t that like “shooting at sparrows with cannons”?

The detector optimization problem is …
● non-linear,
● time-dependent,
● naturally discretized, and
● most parameters are hidden.

⇒ Simple approaches would need
additional constraints!

A control problem 
with few 

parameters

Reinforcement 
learning
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Why reinforcement learning?

Isn’t that like “shooting at sparrows with cannons”?

Including more control parameters might “turn the sparrow 
into a dragon”: 
● detector concepts with many thermally coupled 

components, 
● additional optimization of magnetic field,
● cryostat parameters, 
● …
⇒ Simple approaches would need
individual adaptations!



CryoEnv - An OpenAI Gym environment 
for cryogenic detector optimization
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CryoEnv
Code: https://github.com/fewagner/CryoEnv

https://github.com/fewagner/CryoEnv


Components of a cryogenic detector
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Temperature evolution 
(Tc, Te) is dominated 
by heat capacities (Cc, 
Ce) of crystal phonons 
and thermometer 
electrons and thermal 
coupling Gec in 
between and to heat 
bath (Gcb, Geb). 



Components of a cryogenic detector
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Currents (ITES, Ishunt) in 
read out circuit are 
coupled to 
temperatures through 
the resistance of the 
superconducting 
thermometer RTES.  



Components of a cryogenic detector
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Particle 
recoils

Power

Self 
heatingε(1 - ε)

Particle recoils produce 
power inputs in the 
crystal (∝ 1 - ε) and 
thermometer (∝ ε).

Self heating of the 
thermometer 
introduces 
time-dependency.



Components of a cryogenic detector
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Particle 
recoils

Power

Self 
heating

Heating,
test pulses 

ε

δ

(1 - ε)

(1 - δ)

Particle recoils produce 
power inputs in the 
crystal (∝ 1 - ε) and 
thermometer (∝ ε).

Self heating of the 
thermometer 
introduces 
time-dependency.

A heating resistor in the 
crystal controls heating 
and test signals (test 
pulses).



Components of a cryogenic detector

17

Particle 
recoils

Noise

Power

Thermal 
noise

1/f 
noise

Johnson 
noise

Johnson 
noise

?

Self 
heating

Heating,
test pulses 

SQUID 
noise

ε

δ

(1 - ε)

(1 - δ)

Various noise 
contributions limit the 
sensitivity of the 
detector to low energy 
recoils.



Components of a cryogenic detector

18

Particle 
recoils

Noise

Power

Thermal 
noise

1/f 
noise

Johnson 
noise

Johnson 
noise

?

Self 
heating

Heating,
test pulses 

SQUID 
noise

ε

δ

(1 - ε)

(1 - δ)
The digitized signal of a particle 
recoil is a pulse-shaped voltage 
trace.

Internal parameters are not 
observable!



The cryo ODEs

System of coupled Ordinary Differential Equations (ODEs) for arbitrary number of 
thermal components and Transitions Edge Sensors (TESs).

Solve numerically, with interpolation of arbitrary numerical function for TES 
resistance.

Cryogenics

Electronics
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The noise contributions (good summary in E. Pantic, 2008)

Defs.

Thermal SQUID

Johnson 
TES

Johnson 
Shunt

1/f 20

advanced



Let’s see it in action!

21



Triggered events can be rendered, …
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Triggered events can be rendered, …
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… whoops, pile-up, …
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… and the pulse height (PH) over time is monitored.

Pile-up

42 min continuous measurement 
time simulated in 1:51 runtime 
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Pile-up

42 min continuous measurement 
time simulated in 1:51 runtime 
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… and the pulse height (PH) over time is monitored.



Standard approach: find a good OP by sweeping DAC.

42 min continuous measurement 
time simulated in 0:37 runtime
(empty records are faster integrated 
than saturated pulses)
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SWEEP



Standard approach: find a good OP by sweeping DAC.

42 min continuous measurement 
time simulated in 0:37 runtime
(empty records are faster integrated 
than saturated pulses)
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SWEEP
this is the minimum time required 
for the standard approach 
(typically it’s 3-4 times this 
amount!)



Can we do better than the standard 
approach?
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Reward function: how do we tell which OP is good?

For low E linear: 

Threshold is a multiple of the 
resolution

PCE = E/U

Estimate the things with test pulses

Neglect all constants, leads to …

Loss Reward
30

advancedFirst, we need to quantify our objective. 
The goal is a Low energy Threshold (LT):



Soft actor critic (SAC)
https://arxiv.org/abs/1801.01290v2
Stable baselines 3 implementation
https://jmlr.org/papers/volume22/20-1364/20-1364.pdf

Training a SAC agent on CryoEnv

Action
(setting DAC 

and Ib)

Observation 
(PH, RMS, 

TPA, DAC, IB) 
and Reward 
(LT objective)

https://arxiv.org/abs/1801.01290v2
https://jmlr.org/papers/volume22/20-1364/20-1364.pdf


Simple scenario: no pile-up, optimize for one test signal

13 min training time simulated in 
2:19 runtime
(~2-3 times speed up on GPU 
expected)

TRAINING
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github.com/fewagner/CryoEnv

https://github.com/fewagner/CryoEnv


Simple scenario: no pile-up, optimize for one test signal

TESTING
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(This animation does not work in the PDF version.)



Challenging scenario: strong pile-up, multiple test signal

26 min training time simulated in 
2:57 runtime,
this time with pile up and TPA 
queue

TRAINING
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Challenging scenario: strong pile-up, multiple test signal

26 min training time simulated in 
2:57 runtime,
this time with pile up and TPA 
queue

TRAINING
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this is our estimate for the 
required training time on a live 
experiment



Detector runs robustly! 40% faster than standard approach.

The optimal OP is slightly different - is it 
equivalent, or did we importance sample the 
rewards by the choice of TPA in training?

TESTING
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(This animation does not work in the PDF version.)



Conclusion, outlook and thanks a lot!

Special kudos for our 
fantastic 

Master’s/Bachelor’s 
students:

Daniel 
Bartolot

(MSc)

Kolos 
Niedermayer

(Bsc)

Special thanks for fruitful 
discussions and support to:

Florian Reindl
Franz Pröbst

Vanessa Zema
Johannes Rothe

Stephan Fichtinger
Wolfgang Waltenberger

Jochen Schieck
Clemens Heitzinger

The CRESST collaboration
The COSINUS collaboration
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No sparrows or dragons were harmed 
during the making of these slides.

● Our approach requires less measurement time than the standard 

approach, no manual interventions, optimizes directly the 

sensitivity, and is scalable to multi-detector setups.

● First runs in a live measurement environment are planned for later 

this year - stay tuned!

Felix Wagner
(PhD)


