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Data analysis in High Energy Physics

• Large datasets are typical in HEP

⇒ Because of resource constraints, often only a subset of data is used

• Background dominated data ⇒ Imbalanced data

• Complex data

⇒ Undefined values

⇒ Categorical values

Problem: Training a model on a large dataset can take a lot of computing time

and resources. How can this be mitigated?

Maximilian Mucha – max.mucha@uni-bonn.de ACAT 2022 1/14

max.mucha@uni-bonn.de


What is the Federation?

Idea: 1. Split data into smaller subsets and for each subset train a model.

2. Predict by using the ensemble of models

Issue: But how to split the data wisely and how to predict? ⇒ Federation

Definition

“federation, the government of a federal community. In such a model there
are two levels of government, one dealing with the common and the other with
the territorially diverse.” https://www.britannica.com/topic/federation
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Federation – Concept
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Federation – Training
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Federation – Predicting
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Data Sample

• Openly available dataset1 from ATLAS

• Simulated H → ττ signal and background events at
√
s = 13 TeV

• Developed for the Kaggle Higgs Boson Challenge2

• Total of 30 features (some have undefined values)

→ 17 kinematic features (including categorical: PRI jet num)

→ 13 derived features

• Imbalance Ratio of IR ≈ 1.92 (IR =
Nsig

Nbkg
)

• 4 Subsets: training (250 000), validation (100 000), testing (450 000),

unused (18 238)

1
https://opendata.cern.ch/record/328

2
https://www.kaggle.com/c/higgs-boson
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Federation – Visualization

• UMAP [1] reduces

dimensions of training data

from 30D to 2D

• HDBSCAN [2] finds 6

cluster in the 2D UMAP

embedding

⇒ 6 independent classifiers

(federation members)

are constructed
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Federation – Visualization

• In some clusters, the

majority of data points are

background events

⇒ Oversampling is needed

• Cluster 0 has “signal

bands” in local structure
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Federation – Visualization

• Global topology of the

2D-embedding is highly

influenced by the number

of jets feature
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Baseline – Hand made clustering

• Clustering causes loss of

statistics

⇒ Performance of cluster

based classifier

degrades

• For a fair comparison, we

chose as baseline a similar

(feature driven) clustering

⇒ Clusters based on

number of jets
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Performance evaluation

Figure of merit

• The evaluation metric from the Kaggle Higgs Bososn Challenge is used

⇒ Approximate Median Significance (AMS)

• Predictions are sorted after the highest probability

• Only the N top predictions are marked as signal predictions

Finding the right threshold

• Threshold scan on validation data

• Threshold with the highest AMS is used for the test data
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Performance comparison

Method Mean AMS ± Std @Threshold

Single classifier 3.628± 0.036 0.160

Baseline (n-Jet clusters) 3.395± 0.067 0.090

Federation (no oversampling) 3.480± 0.037 0.145

Federation (with oversampling) 3.564± 0.041 0.145

Kaggle Challenge Submissions AMS

Winner (Gábor Melis) 3.80581

Place 6 (Crowwork with XGBoost) 3.71885

Bootstraped results (N = 1000) of test data
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Federation – Performance plot

Mean bootstrapped (N = 1000) AMS of test data against decision threshold
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Summary and Conclusion

• UMAP and HDBSCAN are the core of the Federation

⇒ Creation of Federation members

⇒ Used for Dynamic Classification Selection

• Oversampling the training data of the Federation members improves

performance

• The training and predicting of the Federation members can be parallelized

• The Federation surpasses a comparable n-Jet based clustering approach
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Thank you for listening!
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Data Sample – Classifier

• Using XGBoost as baseline to compare with previous research

• Parameters based on XGBoost Paper3

• max depth = 6

• learning rate = 0.1

• loss = AUC of Precision-Recall Curve

• γ = 0.1, λreg = 0

• 30 early stopping rounds

• Using validation set for validation

3
PMLR 42:69-80, 2015

http://proceedings.mlr.press/v42/chen14.pdf


Data Sample – Figure of merit

Approximate median significance (AMS)

AMS =

√
2

(
(s + b + br ) log

(
1 +

s

b + br

)
− s

)
br = 10 is a constant regularization term

s =
n∑

i=1

wi1{yi = s}1{ŷi = s}

b =
n∑

i=1

wi1{yi = b}1{ŷi = s}



Federation – Performance plot

Mean bootstrapped (N = 1000) AMS of validation data against decision threshold



Oversampler performance comparison

Mean bootstrapped (N = 1000) AMS against IR of training data for best performing oversamplers



Federation – Oversampler performance comparison

Method Mean AMS ± Std @Threshold

Federation (ROSE) 3.564± 0.041 0.145

Federation (PDFOS) 3.554± 0.040 0.145

Federation (polynom fit) 3.530± 0.034 0.160

Federation (RWO sampling) 3.529± 0.036 0.145

Federation (no oversampling) 3.480± 0.037 0.145

Federation (SMOTE) 3.451± 0.038 0.145

Bootstraped results (N = 1000) of test data



UMAP applied on MNIST

Lower dimensional UMAP embedding
Lower dimensional UMAP embedding

d



UMAP applied on MNIST

Lower dimensional UMAP embedding

d

Lower dimensional UMAP embedding
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