

The Federation

A novel machine learning technique applied on data from the Higgs Boson Machine Learning Challenge

Maximilian Mucha, Eckhard von Törne

October 25, 2022

ACAT 2022, Bari

Data analysis in High Energy Physics

- Large datasets are typical in HEP
 - $\Rightarrow~$ Because of resource constraints, often only a subset of data is used
- Background dominated data \Rightarrow Imbalanced data
- Complex data
 - \Rightarrow Undefined values
 - \Rightarrow Categorical values

Problem: Training a model on a large dataset can take a lot of computing time and resources. How can this be mitigated?

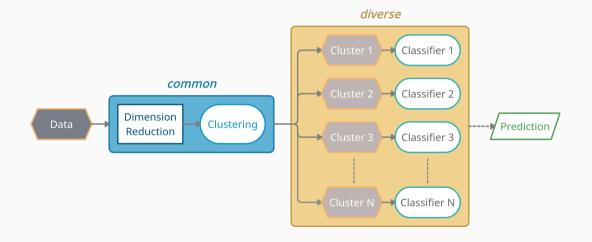
Idea: 1. Split data into smaller subsets and for each subset train a model.2. Predict by using the ensemble of models

Issue: But how to split the data wisely and how to predict? \Rightarrow Federation

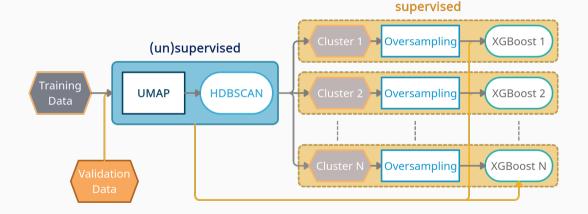
Definition

"federation, the government of a federal community. In such a model there are two levels of government, one dealing with the <u>common</u> and the other with the territorially <u>diverse</u>." https://www.britannica.com/topic/federation

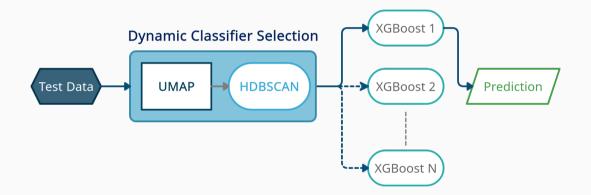
Federation – Concept



Federation – Training



Federation – Predicting

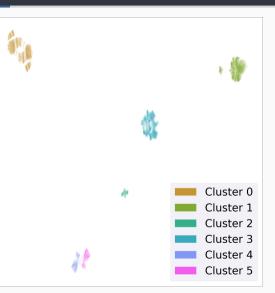


- Openly available dataset¹ from ATLAS
- Simulated H
 ightarrow au au signal and background events at $\sqrt{s} = 13 \, {
 m TeV}$
- Developed for the Kaggle Higgs Boson Challenge²
- Total of 30 features (some have undefined values)
 - \rightarrow 17 kinematic features (including categorical: *PRI_jet_num*)
 - ightarrow 13 derived features
- Imbalance Ratio of IR pprox 1.92 (IR $= rac{N_{
 m sig}}{N_{
 m bkr}}$)
- 4 Subsets: training (250 000), validation (100 000), testing (450 000), unused (18 238)

¹https://opendata.cern.ch/record/328
²https://www.kaggle.com/c/higgs-boson

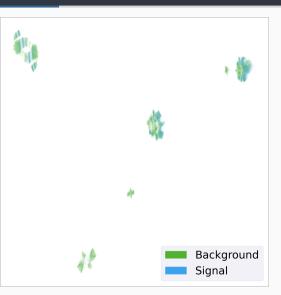
Federation – Visualization

- UMAP [1] reduces dimensions of training data from 30D to 2D
- HDBSCAN [2] finds 6 cluster in the 2D UMAP embedding
 - \Rightarrow 6 independent classifiers (federation members) are constructed



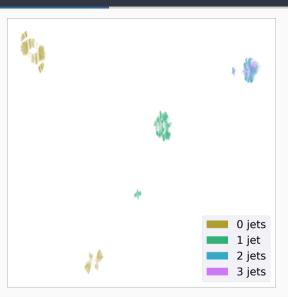
Federation – Visualization

- In some clusters, the majority of data points are background events
 - \Rightarrow Oversampling is needed
- Cluster 0 has "signal bands" in local structure



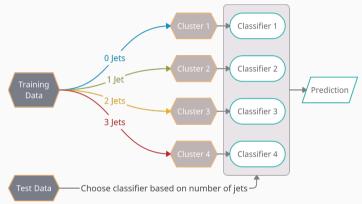
Federation – Visualization

 Global topology of the 2D-embedding is highly influenced by the number of jets feature



Baseline – Hand made clustering

- Clustering causes loss of statistics
 - ⇒ Performance of cluster based classifier degrades
- For a fair comparison, we chose as baseline a similar (feature driven) clustering
 - \Rightarrow Clusters based on number of jets



Performance evaluation

Figure of merit

- The evaluation metric from the Kaggle Higgs Bososn Challenge is used
 - \Rightarrow Approximate Median Significance (AMS)
- Predictions are sorted after the highest probability
- Only the N top predictions are marked as signal predictions

Finding the right threshold

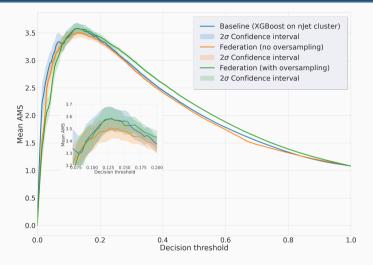
- Threshold scan on validation data
- Threshold with the highest AMS is used for the test data

Performance comparison

Method	Mean AMS \pm Std	@Threshold
Single classifier	3.628 ± 0.036	0.160
Baseline (n-Jet clusters)	3.395 ± 0.067	0.090
Federation (no oversampling)	3.480 ± 0.037	0.145
Federation (with oversampling)	3.564 ± 0.041	0.145
Kaggle Challenge Submissions	AMS	
Winner (Gábor Melis)	3.80581	
Place 6 (Crowwork with XGBoost)	3.71885	

Bootstraped results (N = 1000) of test data

Federation – Performance plot



Mean bootstrapped (N = 1000) AMS of test data against decision threshold

- UMAP and HDBSCAN are the core of the Federation
 - \Rightarrow Creation of Federation members
 - \Rightarrow Used for Dynamic Classification Selection
- Oversampling the training data of the Federation members improves performance
- The training and predicting of the Federation members can be parallelized
- The Federation surpasses a comparable n-Jet based clustering approach

Thank you for listening!

- Tim Sainburg, Leland McInnes, and Timothy Q. Gentner. "Parametric UMAP: learning embeddings with deep neural networks for representation and semi-supervised learning". In: ArXiv e-prints (2020). arXiv: 2009.12981 [stat.ML].
- [2] Leland McInnes, John Healy, and Steve Astels. "hdbscan: Hierarchical density based clustering". In: The Journal of Open Source Software 2.11 (2017), p. 205.
- [3] Leland McInnes et al. "UMAP: Uniform Manifold Approximation and Projection". In: The Journal of Open Source Software 3.29 (2018), p. 861.
- [4] Haibo He and Edwardo A. Garcia. "Learning from Imbalanced Data". In: IEEE Transactions on Knowledge and Data Engineering 21.9 (2009), pp. 1263–1284. DOI: 10.1109/TKDE.2008.239.
- [5] György Kovács. "An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets". In: Applied Soft Computing 83 (2019). (IF-2019=4.873), p. 105662.
 DOI: 10.1016/j.asoc.2019.105662.
- [6] György Kovács. "smote-variants: a Python Implementation of 85 Minority Oversampling Techniques". In: Neurocomputing 366 (2019). (IF-2019=4.07), pp. 352–354. DOI: 10.1016/j.neucom.2019.06.100.

- Using XGBoost as baseline to compare with previous research
- Parameters based on XGBoost Paper³
 - $max_depth = 6$
 - learning rate = 0.1
 - $\mathsf{loss} = \mathsf{AUC}$ of Precision-Recall Curve
 - $\gamma = 0.1$, $\lambda_{reg} = 0$
 - 30 early stopping rounds
- Using validation set for validation

³PMLR 42:69-80, 2015

Data Sample – Figure of merit

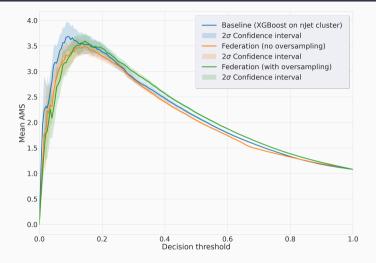
Approximate median significance (AMS)

$$\mathsf{AMS} = \sqrt{2\Big((s+b+b_r)\log\Big(1+rac{s}{b+b_r}\Big)-s\Big)}$$

 $b_r = 10$ is a constant regularization term

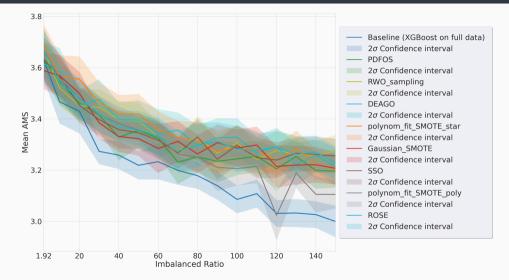
$$s = \sum_{i=1}^{n} w_{i} \mathbb{1}\{y_{i} = s\} \mathbb{1}\{\hat{y}_{i} = s\}$$
$$b = \sum_{i=1}^{n} w_{i} \mathbb{1}\{y_{i} = b\} \mathbb{1}\{\hat{y}_{i} = s\}$$

Federation – Performance plot



Mean bootstrapped (N = 1000) AMS of validation data against decision threshold

Oversampler performance comparison



Mean bootstrapped (N = 1000) AMS against IR of training data for best performing oversamplers

Federation – Oversampler performance comparison

Method	Mean AMS \pm Std	@Threshold
Federation (ROSE)	3.564 ± 0.041	0.145
Federation (PDFOS)	3.554 ± 0.040	0.145
Federation (polynom fit)	3.530 ± 0.034	0.160
Federation (RWO sampling)	3.529 ± 0.036	0.145
Federation (no oversampling)	3.480 ± 0.037	0.145
Federation (SMOTE)	3.451 ± 0.038	0.145

Bootstraped results (N = 1000) of test data

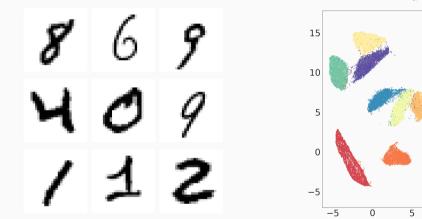
UMAP applied on **MNIST**



Lower dimensional UMAP embedding

Lower dimensional UMAP embedding

UMAP applied on **MNIST**



Lower dimensional UMAP embedding

Lower dimensional UMAP embedding

10

15

d

8

6 5

4