Uncertainty estimation in deep learning basedclassifiers of High Energy Physics events using Monte Carlo Dropout. 🗶 de Valparaíso CHILE

Raquel Pezoa^{1,2}, Sebastián Bórquez³, William Brooks^{2,4}, Luis Salinas^{2,3}, and Claudio \bigcirc cctval Torres^{2,3} (1) Escuela de Ingeniería Informática, Facultad de Ingeniería, Universidad de Valparaíso, Chile. (2) Centro Cientí- 🤇 fico Tecnológico de Valparaíso. (3) Departamento de Informática, Universidad Técnica Federico Santa María. (4) Departamento de Física, Universidad Técnica Federico Santa María. raquel.pezoa@uv.cl, sebastian.borquez@sansano.usm.cl, william.brooks@usm.cl, claudio.torres@usm.cl

1. Introduction

• Classifying HEP events, or separating *sig*nal events from the background, is an important analysis task, in the search for new phenomena. • Complex deep learning-based models have been fundamental for achieving accurate performance.

• However, the uncertainty estimation has

4. Monte Carlo Dropout

• Let $F(x,\omega)$ a DNN model with parameters w, the training set $\mathcal{D}_{\text{train}} := \{X,Y\}, X :=$ $\{x_1,\ldots,x_N\}$ and $Y := \{y_1,\ldots,y_N\}$ are the inputs and outputs, respectively. Bayesian models allow predictions on a new input point x^* , predicting $y^* = F(x^*, \omega)$ given the learned weights ω .

The predictive distribution is given by
$$p(\boldsymbol{y}^* | \boldsymbol{x}^*, \boldsymbol{X}, \boldsymbol{Y}) = \int p(\boldsymbol{y}^* | \boldsymbol{x}^*, \boldsymbol{\omega}) \underbrace{p(\boldsymbol{\omega} | \boldsymbol{X}, \boldsymbol{Y})}_{\text{posterior dist.}} d\boldsymbol{\omega}$$
 (1)

FEDERICO SANTA MARIA

been traditionally neglected when deep learningbased methods are used, despite its critical importance in scientific applications.

2. BDL and Uncertainty Estimation

when classification is performed using deep learning architectures.

based

allow

ing

• **BDL** models usually estimate uncertainty by either placing probability distributions over model weights, or by learning a direct mapping to probabilistic outputs.

• This work is focused on the use of the **Monte** Carlo Dropout (MC-Dropout) method, a BDL technique proposed in [1] that is based on Dropout [2].

• $p(\boldsymbol{\omega}|\boldsymbol{X}, \boldsymbol{Y})$ in Eq. 1 is usually intractable, and Monte Carlo Dropout [1] allows us to approximate it.

5. Experiments and Results

We used **autokeras** to select the DNN architecture using the **Higgs** dataset and the following hyperparameters values:

Hyperparameter	Description	Values
num_layers	Number of layers	3, 4, 5, 6
•,		00 01 100 050 510

512

Using MC Dropout, we measure epistemic uncertainties: predictive entropy and mutual information.

3. Event Classification

We classify the events from two datasets:

• Higgs dataset^a for identifying the sig**nal**: $gg \rightarrow H^0 \rightarrow W^{\mp}H^{\pm} \rightarrow W^{\mp}W^{\pm}h^0 \rightarrow$ $W^{\mp}W^{\pm}bb$ from the background.

Each event has with 21 low-level features (lepton_pT, jet1pT, \ldots), and 7 high level features $(m_bb, m_wbb, \dots).$

• Hadronization of the ω meson production off nuclear targets^b.

 $\omega \to \pi^+ \pi^- \gamma \gamma$

^aBaldi et al. Searching for Exotic Particles in Highenergy Physics with Deep Learning. Nature Communications, 2014. ^bA. Bórquez, Master's thesis, UTFSM, Valparaíso, Chile, 2021.

7. References

- [1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning, pages 1050–1059. PMLR, 2016.
- [2] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929-1958, 2014.
- [3] https://shap.readthedocs.io/.

Acknowledgments: This research was supported by FONDECYT Postdoc Project N. 3190740 and ANID PIA/APOYO AFB180002.

 $\rightarrow \widehat{p}(y|\boldsymbol{x})$

 $\mathbf{P}\widehat{p}(y|\mathbf{x})$

6. Conclusions and Future Work

• Preliminary results showed best performance using MC Dropout $D_{rate} = 0.2$, but we still need to improve classification performance. • High predictive entropy $\rightarrow \hat{p}(y|\mathbf{x}) \approx 0.5$, and low mutual information \rightarrow model gives similar probabilities in multiple forward passes. • Future tasks: to include the uncertainty estimations in the training stage to improve performance and to combine BDL with eXplainable Artificial Intelligence techniques, like SHAP. GitHub: https://github.com/rpezoa/MCDropout_HEP_classif