

21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research

From Galaxy Clusters to Cosmic Evolution with Simulation-Based Inference

Presented by: Moonzarin Reza^{1,*}

Collaborators: Y. Zhang², B. Nord^{3,4}, L. Strigari¹, A. Ćiprijanović³, J. Poh⁴, S. Shevchek³

- 1. Department of Physics and Astronomy, Texas A&M University, USA
- 2. NSF's NOIRLab, Tucson, Arizona
- 3. Fermi National Accelerator University, USA
- 4. Department of Astronomy and Astrophysics, University of Chicago, USA

Contact: moonzarin@tamu.edu

Galaxy Clusters

Largest known gravitationally-bound structures in the Universe Mass range 10^{14} - $10^{15}\,M_\odot$

Contains hundreds to thousands of galaxies

Galaxy Cluster SMACS 0723

Credit: James Webb Space Telescope

Cosmological Parameters

Credit: James Webb Space Telescope

Parameters: $\Omega_m \& \sigma_8$

Galaxy Cluster Formation and Evolution

Credit: abyss.uoregon.edu

Cosmological Parameters

Mass-Energy Distribution of the Universe

We know about only 5% of the Universe!

Dark Matter (26%)

Dark Energy (69%)

Source: National Radio Astronomy Observatory

Inputs and Outputs

Inputs (Observables)

- Average mass of galaxy clusters
- Total number of galaxy clusters

Outputs (Parameters)

- Cosmic (Simplified Halo)
- Cosmic and Astrophysical (Cluster)

Cosmological Parameters

Baryonic density (Ω_b)
Matter density (Ω_m)
Hubble's constant (H₀)
Power law index (n_s)
Amplitude fluctuation (σ₈)

Astrophysical Parameters

 $\ln \lambda = M_A + M_B \ln(M)$, with scatter σ

- M_A
- M_B
- σ

(Murata et al. 2017)

Simulation-based Inference (SBI)

Normalizing Flow-based SBI

✓ Consists of a series of simple invertible functions✓ Used for complex data representation

Markov Chain Monte Carlo (MCMC)

Used to:

draw samples from high-dimensional pdf

Disadvantages: explicit likelihood dependence dependent chains

Sampling Strategies: Metropolis-Hastings Gibbs Sampling

SBI vs MCMC

SBI

- Easy to incorporate complex physical models
- Precomputes mock observables for training
- Convenient speed

MCMC

- Difficult to include complex phenomena
- Calculates likelihood during runtime
- Much slower

Dataset 1: Quijote Simulations

N-body simulations: Large Scale Structure Formation

Villaescusa-Navarro, F., et al. "The Quijote Simulations, " *arXiv:1909.05273* (2019).

Early Universe

Late Universe

Credit: TensorFlow Blog

Characteristics:

- 44,100 full N-body simulations
- Snapshots at multiple redshifts

Purpose:

- Constrain cosmological models
- Provide statistics to train ML algorithms

Dataset 1: Quijote Simulations

Training Set: Latin Hypercube Simulations (Variable Cosmology)

$$\begin{split} \Omega_m &: [0.1-0.5] \\ \Omega_b &: [0.03-0.07] \\ h &: [0.5-0.9] \\ n_s &: [0.8-1.2] \\ \sigma_8 &: [0.6-1.0] \end{split}$$

Test Set: <u>Fiducial Planck Cosmology</u> (Fixed Cosmology)

> $\Omega_{m} : 0.318$ $\Omega_{b} : 0.049$ h : 0.671 $n_{s} : 0.962$ $\sigma_{8} : 0.834$

Dataset 2: Analytical Simulations

Analytical simulations are generated by **CosmoSIS**:

$$\mathbf{N} = \mathbf{v} \int n \ (m, z = 0) | \ \Omega_{\rm m}, \sigma_8)$$
$$\mathbf{M} = \mathbf{v} \int n \ (m, z = 0) | \ \Omega_{\rm m}, \sigma_8) * n$$

--- N and M are the mock observables used for training --- n is the cluster density function (depends on the model)

Results [Posterior Distribution]

Results [Training Sample Size]

Results [Analytical Simulations]

n

0.005 0.010

Unc for Ω_b

0.008

0.010

Results [Quijote Simulations]

Results [Cosmological & Astrophysical]

Conclusions

Simulation-based Inference (SBI)

Comparable performance to state-of-the-art-method
Satisfying results for the simulated Universe
Promising tool for large-scale (real) cosmic surveys
Answer fundamental cosmological questions

Contact: moonzarin@tamu.edu