Hybrid Quantum-Classical Networks for Reconstruction and Classification of EO Images

Su Yeon Chang [CERN, EPFL]

Bertrand Le Saux [ESA], Sofia Vallecorsa [CERN], Michelle Grossi [CERN]

26. October 2022

Introduction

Quantum Machine Learning (QML)

- Intersection between Machine Learning (ML) and Quantum Computing (QC)
- Potential to **improve the existing ML techniques**
- Can be efficiently simulated on the real quantum hardware
- Application of QML on images still challenging
- \rightarrow Large input dimensionality, quantum embedding methods
- Further understanding required to understand relation between quantum circuit architecture & training performance
- \rightarrow Limited to standard dataset (MNIST, Fashion MNIST, etc) [1]

Introduction

Earth observation images

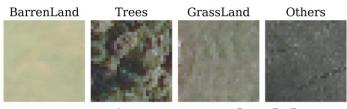
QUANTUM TECHNOLOGY

- Highly benefit from ML
- Complex, unlabelled dataset with large number of features

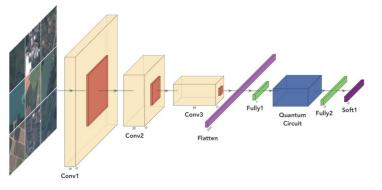
26.10.2022

·eesa

- Increasing number of studies on QML applied on EO
- Evaluate the correlation between training performance and quantum circuit architecture for a realistic EO use-case



SAT4 image samples [4]

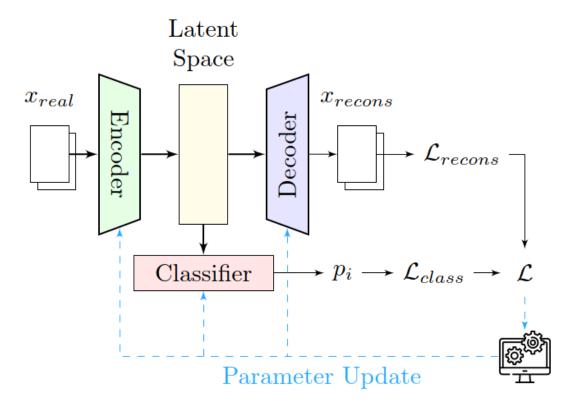


Application of QML in EO [2]

Hybrid Quantum-Classical model

- Multiclass-classification of large images
- Perform reconstruction & classification at the same time
- \rightarrow Combine feature extractions & classification
- Latent space constrained in $[0, \pi]$
- Autoencoder = Classical

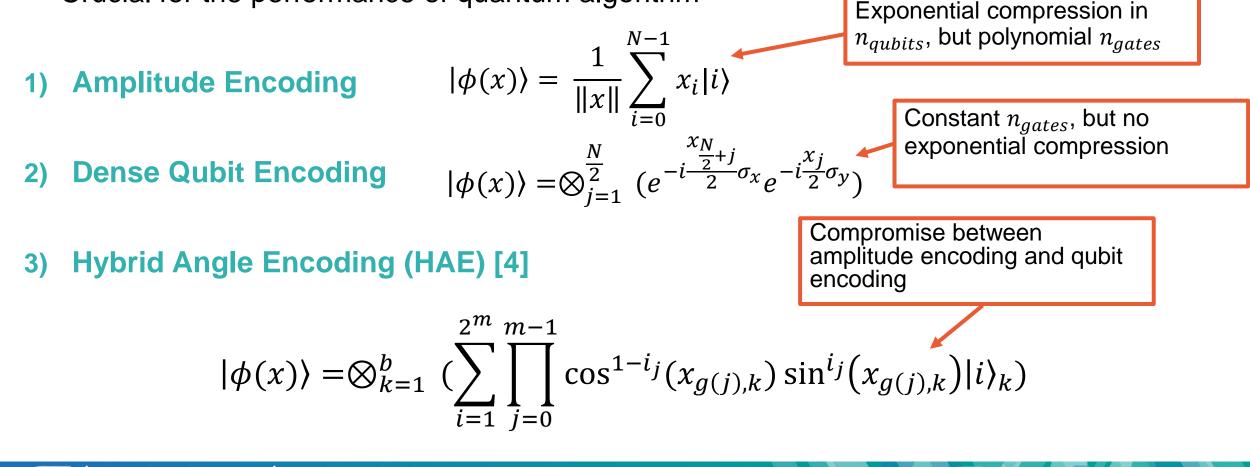
Classifier = Classical / Quantum



Training schema of the hybrid model

Quantum Embedding

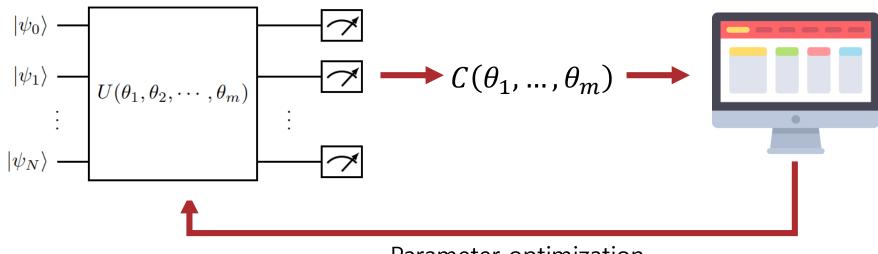
- Mapping of classical data x into quantum state $|\phi(x)\rangle$ in Hilbert space
- Crucial for the performance of quantum algorithm



5

Parameterized Quantum Circuit (PQC)

- Quantum analogue of Neural Networks
- Rotation angles = Free parameters
- Tune the parameters classically
- Framework to solve a variety of problems
- Challenges : Trainability, accuracy and efficiency



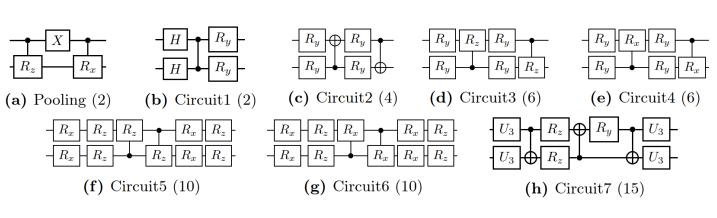
Parameter optimization

Quantum Convolutional Neural Networks

- Quantum analogue of $CNN \rightarrow Preserve translational invariance$
- Avoid barren plateau problem

QUANTUM TECHNOLOGY INITIATIVE

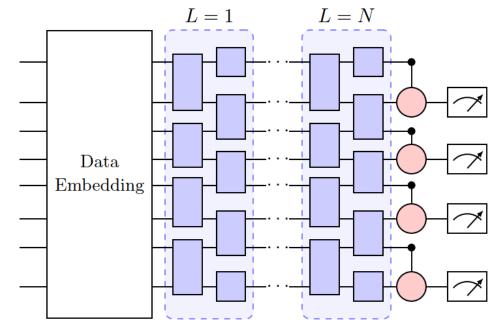
- Start with the model proposed by T. Hur et al. [4]
- Consists of convolutional filters & pooling layers
- \rightarrow Different Ansatz to be investigated



PQC ansatzes used as convolutional filters [4]

 $\mathbf{\cdot eesa}$

26.10.2022



QCNN for multiclass-classification

PQC Descriptors

- Metrics to measure the expressive power of a chosen PQC [1,5]
- **Expressibility** : Measure the capability of quantum circuit to express an arbitrary quantum state

$$Expr' = -\log_{10} D_{KL}(\hat{P}_{PQC}(F;\theta)||P_{Haar}(F))$$

• Entangling Capability : Capture the capability of a PQC to generate highly entangled states

$$Ent = \frac{1}{|S|} \sum_{\theta_i \in S} Q(|\psi_{\theta_i}\rangle)$$

S = Set of sampled circuit parameters

QUANTUM TECHNOLOGY

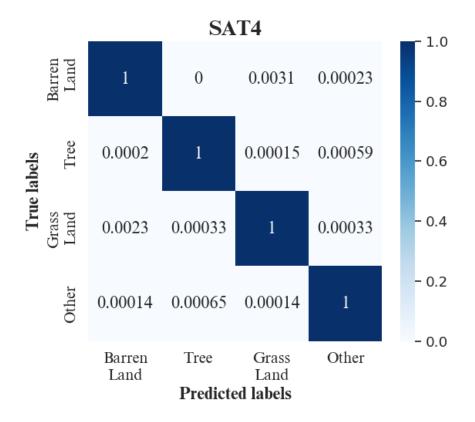
 $Q(|\psi\rangle)$ = Meyer-Wallach entanglement measure

 $\cdot eesa$

 \rightarrow Investigate relation between PQC descriptors and training performance

26.10.2022

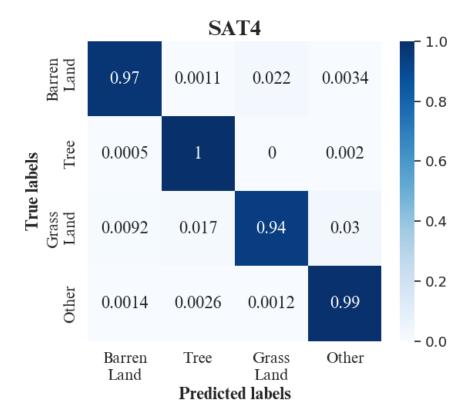
• Train the hybrid model with <u>Circuit7 & L = 2</u> for **SAT4** (4 classes)



· eesa 26.10.2022

QUANTUM TECHNOLOGY INITIATIVE

Training set



G

9

Test set

Results

Train the hybrid model with <u>Circuit7 & L = 1</u> for EuroSAT (10 classes)

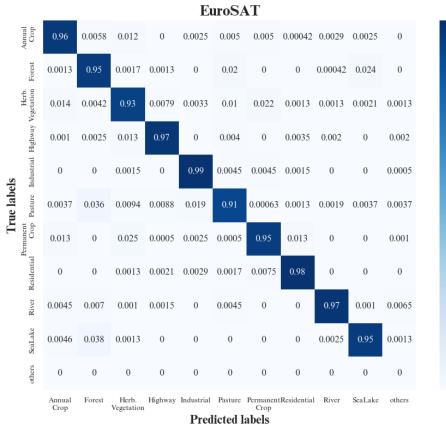
- 0.8

- 0.6

- 0.4

- 0.2

- 0.0



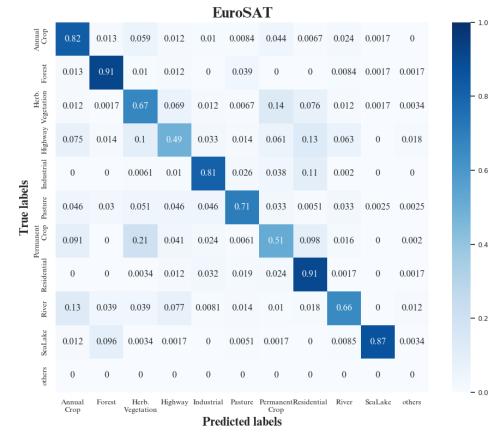
· C C S 26.10.2022

QUANTUM

TECHNOLOGY

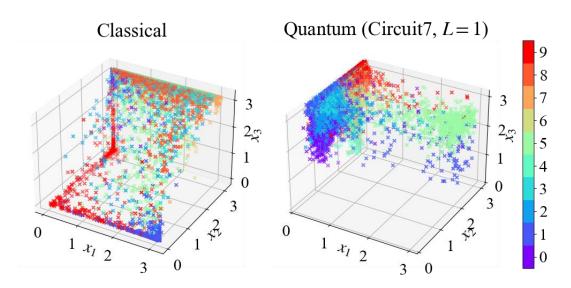
Training set

Test set

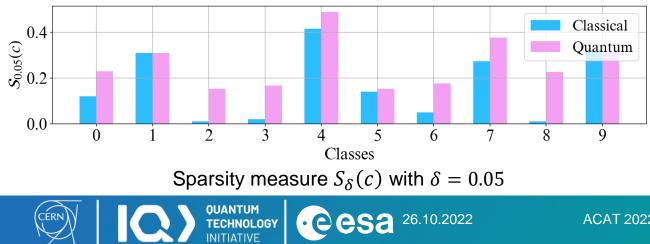


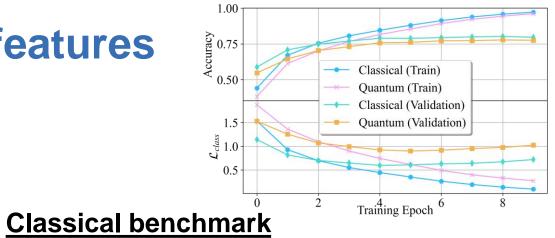
10

Results – Distribution of latent features



Distribution in the first 3 components of the latent features





- Classifier with 1D convolutional layer
- Natural emergence of sparse feature distribution
- \rightarrow Measure sparseness of latent features

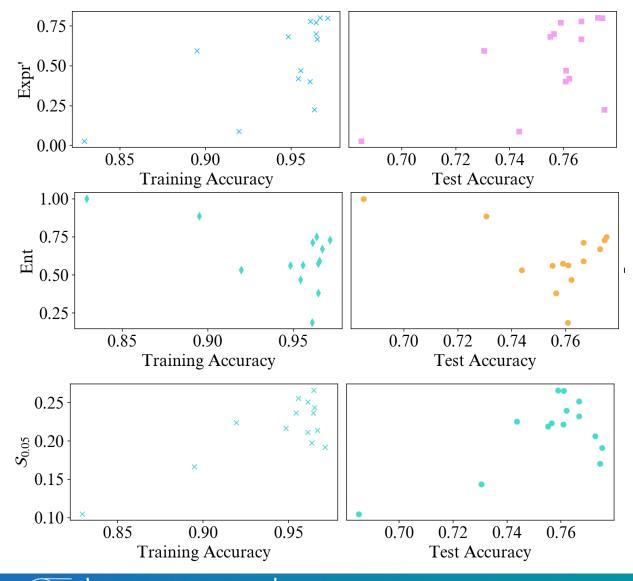
$$S_{\delta}(c) = \left| \{ j \mid x_j(c) < \delta \text{ or } x_j(c) > \pi - \delta \} \right|$$

with $\bar{x}_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$

• $S_{\delta,classical} < S_{\delta,quantum}$

Results – Relation with PQC descriptors

26.10.2022



 $\cdot eesa$

QUANTUM

TECHNOLOGY

Pearson Correlation Coefficient

	Training	Test
Expr' v.s. Acc	0.63	0.57
Ent v.s. Acc	-0.60	-0.48
S_{δ} v.s. Acc	0.80	0.65

- Higher Expr' \rightarrow Higher Accuracy
- Higher Ent \rightarrow Lower Accuracy
- \rightarrow Possibility that entanglement hinders training

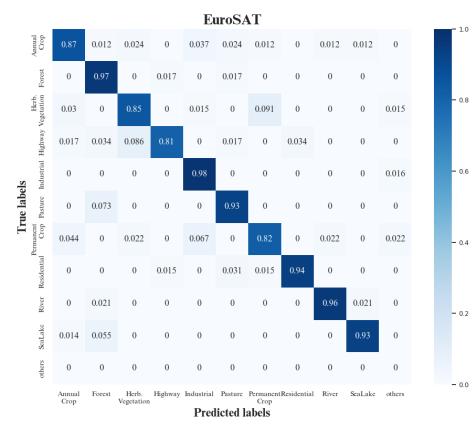
Higher $S_{\delta} \longrightarrow$ Higher Accuracy

12

Results – Evaluation on real quantum hardware

Evaluate pretrained model on IBMQ Montreal with 600 training samples

26.10.2022



QUANTUM

TECHNOLOGY

DQE + Circuit 3 (91% w/o noise)

HAE + Circuit 3 (96% w/o noise)

EuroSAT												1.0	
Annual Crop	0.028	0.028	0.014	0	0.19	0.028	0.14	0	0.17	0.028	0.38		1.0
Forest	0.042	0	0.014	0	0.18	0.042	0.11	0.014	0.22	0.056	0.32		
els Herb. Industrial Highway Vegetation	0.068	0.017	0.017	0	0.085	0.051	0.085	0.034	0.19	0.034	0.42	-	0.8
Highway	0.094	0.019	0.019	0.019	0.17	0.019	0.13	0.038	0.15	0.019	0.32		
els Industrial	0.077	0.019	0	0	0.21	0.12	0.096	0.019	0.17	0.038	0.25	-	0.6
True labels	0.044	0.022	0	0	0.11	0.089	0.11	0.067	0.18	0	0.38		
True lab	0.089	0	0	0	0.2	0.11	0.071	0.018	0.2	0.054	0.27	-	0.4
F Residential	0.068	0.014	0	0	0.15	0.027	0.096	0.014	0.22	0.027	0.38		
River	0.022	0.087	0.022	0	0.17	0.043	0.065	0.022	0.15	0.043	0.37	_	0.2
ScaLakc	0.097	0	0	0	0.18	0.069	0.069	0	0.15	0.12	0.31		
others	0	0	0	0	0	0	0	0	0	0	0		
	Annual Crop	Forest	Herb. Vegetation	Highway		Pasture	Crop	Residential	River	ScaLake	others	-	0.0

Predicted labels

Conclusion

- Construct hybrid quantum-classical model for EO image classification
- \rightarrow Successful <u>multi-class classification (99%</u> for training, >75% for test)
- <u>High correlation</u> between PQC descriptors and the accuracy
- \rightarrow Evidence of drawbacks for highly entangled states
- Paves the way to generic approaches for <u>choosing the right ansatz</u> for a given problem

Future plans

- Solve overfitting problem & Improve reconstruction power
- Study other characteristics of PQC (convergence rate, optimization landscapes)
- Investigate a way to encode the data with complex correlation

QUESTIONS?

su.yeon.chang@cern.ch

References

[1] Hubregtsen, T., Pichlmeier, J., Stecher, P. et al. (2021) Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Intell. 3, 9.

[2] Sebastianelli, A., Zaidenberg, D., Spiller, D., Saux, B., & Ullo, S. (2022). On Circuit-Based Hybrid Quantum Neural Networks for Remote Sensing Imagery Classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 565-580.*

[3] Helber, P., Bischke, B., Dengel, A., & Borth, D. (2018). Introducing Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. *IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium*, 204-207.

[4] Basu, S., Ganguly, S., Mukhopadhyay, S., Dibiano, R., Karki, M., and Nemani, R., DeepSat - A Learning framework for Satellite Imagery, ACM SIGSPATIAL 2015.

[5] Hur, T., Kim, L., & Park, D.K., (2021). Quantum convolutional neural network for classical data classification.

[6] Sim, S., Johnson, P. D. & Aspuru-Guzik, A., (2019). Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. *Advanced Quantum Technologies 2(12)*

[7] Ortiz Marrero, C., Kieferova, M., & Wiebe, N. (2021). Entanglement-Induced Barren Plateaus. PRX Quantum, 2, 040316.

