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Introduction

Quantum Machine Learning (QML) 

▪ Intersection between Machine Learning (ML) and Quantum Computing (QC) 

- Potential to improve the existing ML techniques 

- Can be efficiently simulated on the real quantum hardware

▪ Application of QML on images still challenging

→ Large input dimensionality, quantum embedding methods

▪ Further understanding required to understand relation between quantum circuit 
architecture & training performance 

→ Limited to standard dataset (MNIST, Fashion MNIST, etc) [1] 
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Introduction

Earth observation images

▪ Highly benefit from ML

- Complex, unlabelled dataset with large number of features 

- Increasing number of studies on QML applied on EO 

▪ Evaluate the correlation between training performance and quantum circuit 
architecture for a realistic EO use-case  

EuroSAT image samples [3]

SAT4 image samples [4]

Application of QML in EO [2]
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Hybrid Quantum-Classical model

▪ Multiclass-classification of large images

▪ Perform reconstruction & classification at the 
same time

→ Combine feature extractions & classification 

▪ Latent space constrained in [0, 𝜋]

▪ Autoencoder = Classical

Classifier = Classical / Quantum

Training schema of the hybrid model



▪ Mapping of classical data 𝑥 into quantum state 𝜙(𝑥) in Hilbert space

▪ Crucial for the performance of quantum algorithm

1) Amplitude Encoding 

2) Dense Qubit Encoding

3) Hybrid Angle Encoding (HAE) [4]

Quantum Embedding
5
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Constant 𝑛𝑔𝑎𝑡𝑒𝑠, but no 
exponential compression 

Compromise between 
amplitude encoding and qubit 
encoding
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Parameterized Quantum Circuit (PQC) 

▪ Quantum analogue of Neural Networks

▪ Rotation angles = Free parameters

▪ Tune the parameters classically 

▪ Framework to solve a variety of problems 

▪ Challenges : Trainability, accuracy and efficiency

Parameter optimization

𝐶 𝜃1, … , 𝜃𝑚
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Quantum Convolutional Neural Networks 

▪ Quantum analogue of CNN → Preserve translational invariance

▪ Avoid barren plateau problem

▪ Start with the model proposed by T. Hur et al. [4]

▪ Consists of convolutional filters & pooling layers 

→ Different Ansatz to be investigated

PQC ansatzes used as convolutional filters [4] QCNN for multiclass-classification
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PQC Descriptors

▪ Metrics to measure the expressive power of a chosen PQC [1,5]

▪ Expressibility :  Measure the capability of quantum circuit to express an arbitrary quantum state

𝐸𝑥𝑝𝑟′ = − log10𝐷𝐾𝐿( ෠𝑃𝑃𝑄𝐶 𝐹; 𝜃 ||𝑃𝐻𝑎𝑎𝑟 𝐹 )

▪ Entangling Capability : Capture the capability of a PQC to generate highly entangled states

𝐸𝑛𝑡 =
1

𝑆
෍

𝜃𝑖∈𝑆
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𝑆 =  Set of sampled circuit parameters 

𝑄(|𝜓⟩) =  Meyer-Wallach entanglement measure 

→ Investigate relation between PQC descriptors and training performance



26.10.2022 ACAT 2022 - QML for EO images 9

Results

Training set Test set 

▪ Train the hybrid model with Circuit7 & L =  2 for SAT4 (4 classes) 
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Results

Training set Test set 

▪ Train the hybrid model with Circuit7 & L = 1 for EuroSAT (10 classes) 
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Results – Distribution of latent features

Classical benchmark

- Classifier with 1D convolutional layer

▪ Natural emergence of sparse feature 
distribution

→ Measure sparseness of latent features 

𝑆𝛿 𝑐 = 𝑗 𝑥𝑗 𝑐 < 𝛿 𝑜𝑟 𝑥𝑗 𝑐 > 𝜋 − 𝛿}

with ҧ𝑥𝑗 =
1

𝑁
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▪ 𝑆𝛿,𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 < 𝑆𝛿,𝑞𝑢𝑎𝑛𝑡𝑢𝑚
Sparsity measure 𝑆𝛿 𝑐 with 𝛿 = 0.05

Distribution in the first 3 components of the latent features



▪ Pearson Correlation Coefficient

▪ Higher Expr’ → Higher Accuracy 

▪ Higher Ent    → Lower Accuracy 

→ Possibility that entanglement hinders 
training  

▪ Higher 𝑆𝛿 → Higher Accuracy 
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Results – Relation with PQC descriptors

Training Test

Expr’ v.s. Acc 0.63 0.57

Ent v.s. Acc -0.60 -0.48

𝑆𝛿 v.s. Acc 0.80 0.65



▪ Evaluate pretrained model on IBMQ Montreal with 600 training samples
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Results – Evaluation on real quantum hardware 

DQE + Circuit 3 (91% w/o noise)  HAE + Circuit 3 (96% w/o noise) 



▪ Construct hybrid quantum-classical model for EO image classification 

→ Successful multi-class classification (99% for training, >75% for test) 

▪ High correlation between PQC descriptors and the accuracy

→ Evidence of drawbacks for highly entangled states

▪ Paves the way to generic approaches for choosing the right ansatz for a given problem

Future plans 

- Solve overfitting problem & Improve reconstruction power

- Study other characteristics of PQC (convergence rate, optimization landscapes) 

- Investigate a way to encode the data with complex correlation  
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Conclusion
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