
Shifting focus in ROOT from training to model evaluation and to interoperability
Several Python tools exist for training ML models (e.g. Tensorflow, PyTorch, scikit-learn)

Missing fast, efficient and easy-to-use tools to deploy these models in production
Developed new interfaces for model inference (evaluation) that can be used easily
in external software or integrated into analysis tools such as ROOT RDataFrame

SOFIE for deep learning models
RBDT for fast Boosted Decision Tree

Generate C++ code from trained models for fast evaluation

Machine Learning in ROOT

ROOT	Machine	Learning	Ecosystem	
Lorenzo	Moneta,	Sitong	An,	Sanjiban	Sengupta,	Ahmat	Hamdan,	Neel	Shah,	Harshal	Shende,	Sanchi	Mittal,	Omar	Zapata

SOFIE: inference engine that generates C++ code from an input trained model.
The input parsed model is in ONNX format (a standard for ML and supported by several tools)

but supported also native Keras or PyTorch formats.

The generated C++ code can be easily integrated into any code where model evaluation is
used:

analysis code based on RDataFrame (a special interface is provided to easy this
integration);
reconstruction or simulation code where ML models could be used.

The code has minimal dependencies, only on BLAS for matrix computation.
The code can be compiled on the fly using the CLING JIT system: can be used at run-time.
Several operators are supported, but the code is modular and is easy to add custom
operators (user-defined).

SOFIE: New Inference for DL models

Code Parsing and code generation
Parsing: from ONNX to an intermediate representation: SOFIE::Model

Parsing from Keras:

Parsing from PyTorch:

Generate C++ code and also weight data file

from RModel to a C++ file (“Model.hxx”) and a weight file (“Model.dat”)

using namespace TMVA::Experimental;
SOFIE::RModelParser_ONNX parser;
SOFIE::RModel model = parser.Parse("Model.onnx");

SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

SOFIE::RModel model = SOFIE::PyTorch::Parse(“PyTorchModel.pt”);

// generate text code internally (with some options)
model.Generate();
// write output header file and data weight file
model.OutputGenerated();

Model Inference with SOFIE
Generated code has minimal dependencies (only on BLAS libraries)
Can be easily integrated in whatever C++ code. Here is an example of using it with a
model with a single input and single output:

Model parsing and generation can also be done at run time using CLING and instead of
including the model header file one can just do in C++ or Python

#include “Model.hxx”
TMVA_SOFIE_Model::Session s(); // create session class
//—- event loop
for (auto input : inputEvents) {{
 // evaluate model: input is an std::vector of type float *
std::vector<float> result = s.infer(input.data());

}

// compile generate SOFIE code using ROOT interpreter
gInterpreter->Declare(‘#include “Model.hxx”’)

Model Inference: RDF Integration
Model evaluation can be easily performed with RDataFrame using the adapter class
SofieFunctor

See the full example tutorial code in C++ or in Python

auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv”,“m_jlv”,"m_bb","m_wbb","m_wwbb"})
.Histo1D("DNN_Value");

SOFIE Operator Support
Perceptron: Gemm Implemented and integrated (ROOT 6.26)

Activations: Relu, Selu, Sigmoid, Softmax, LeakyRelu Implemented and integrated (ROOT 6.26)

Convolution (1D, 2D and 3D) Implemented and integrated (ROOT 6.26)

Recurrent: RNN, GRU, LSTM Implemented and integrated (ROOT 6.26)

BatchNormalization Implemented and integrated (ROOT 6.26)

Pooling: MaxPool, AveragePool, GlobalAverage Implemented and integrated (ROOT 6.26)

Deconvolution (1D,2D,3D) Implemented and integrated in master (for ROOT 6.28)
 Layer operations: Neg, Exp, Sqrt, Reciprocal (Unary op.),
 Add, Sum, Mul, Div (Binary op.), Reshape, Flatten, Transpose,
Squeeze, Unsqueeze, Slice, Concat, Identity, Reduce,

Implemented and integrated in master (for ROOT 6.28)

Custom operator Implemented and integrated in master (for ROOT 6.28)

InstanceNorm, LayerNormalization Implemented but to be integrated (PR #8885, #11595)

Gather (for embedding) Planned for next release

GNN (Message Passing GNN based on Deep Mind graph_nets Implemented but to be integrated (PR #11208)

Next to support: e.g. DGCNN, Normalising flows,….? Depending on user needs

SOFIE Benchmarks

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

Sm
al

le
r =

 B
et

te
r

Comparison of SOFIE inference with ONNXRuntime (from Microsoft) and LWTNN (ATLAS)
2-3 faster than ONNXRuntime for DNN with batch size=1

e.g. using RDF interface for a DNN with 5 layers of 200x200 nodes:
SOFIE: 310K evts/s, ONNXRuntime: 120K evt/s, LWTNN: 120K evts/s

20% faster for RNN operators
slightly slower for CNN (20% for 2D) but further optimisations still possible

RBDT: Fast Decision Tree Inference
Developed also a fast inference engine for boosted decision trees.
Based on code generation that can be JIT’ed by CLING.
Easy to use in both C++ and Python.

Example: first do external training in Python using XGBoost:

then inference in C++ or Python (e.g. in C++):

xgb = xgboost.BDTClassifier(options)
xgb.fit(x, y)  

ROOT.TMVA.SaveXGBoost(xgb, "myBDT", “model.root")

TMVA::RBDT bdt("myBDT", “model.root");
for (auto & input : inputEvents)
 auto yi = bdt.Compute(input); // single event evaluation
 
auto x = TMVA::RTensor<float>(inputEventsData, shape);
auto y = bdt.Compute(x); // batch evaluation

Interoperability with Python
Pythonization of TMVA interfaces: from string API to python keyword args
Training of Python external ML tools within TMVA workflow

interfaces to scikit-learn, Keras and PyTorch
Generic data loader for ML workflows:

generator doing batching and shuffling from ROOT files on the fly;
allows for efficient training of datasets larger than RAM sizes;
direct feeding of data from disk to GPU. Here is a possible example:

df = ROOT.RDataFrame("Events", "http://file.root")
generator = TMVA.BatchGenerator(df, columns, batchSize)
for step in gradientSteps:
 x = generator()
 model.fit(x)

Summary

TMVA_CNN_ClassificationOutput.root

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
PyKeras
TCNN_CPU
PyTorch
TDNN_CPU
BDT

Background rejection versus Signal efficiency

Released of SOFIE, a fast and easy-to-use inference engine for ML models, in ROOT
6.26 with a lot of enhancements coming in 6.28

Good performance compared to existing packages ONNXRuntime and LWTNN;
further optimisations are still possible
Integrated with other ROOT tools to evaluate models in user analysis: RDataFrame
On-going developments according to user needs (GNN, CUDA support, etc..)

Working overall on better interoperability of TMVA with other ML ecosystems
Batch generator for training efficiently from ROOT I/O and RDF to external Python
tools

References
SOFIE GitHub in current ROOT master.
SOFIE notebooks and tutorials.
Summer student report on new GNN support.
ICHEP 2022 presentation about SOFIE.
Benchmark tests of SOFIE (PR on rootbench github).

2-3 faster than xgboost !

Acknowledgements
S.	An.	gratefully	acknowledges	the	support	of	the	Marie	
Sklodowska-Curie	Innovative	Training	Network	Fellowship	of	the	
European	Commission	Horizon	2020	Programme,	under	contract	
number	765710	INSIGHTS.		
S.	Sengupta	and	A.	Hamdan	are		2022	CERN	summer	students	and	
2021	Google	Summer	of	Code.	Neel	Shah,	Sanchi	Mittal	and	
Harshal	Shende	are	2022	Google	Summer	of	Code	students.	

https://github.com/lmoneta/tmva-tutorial/blob/master/sofie/TMVA_SOFIE_RDataFrame.ipynb
https://github.com/lmoneta/tmva-tutorial/blob/master/sofie/TMVA_SOFIE_RDataFrame_py.ipynb
https://github.com/root-project/root/pull/8885
https://github.com/root-project/root/pull/11595
https://github.com/root-project/root/pull/11208
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://indico.cern.ch/event/1199953/contributions/5056074/attachments/2511227/4324668/TMVA%20SOFIE_%20Enhancing%20the%20Machine%20Learning%20Inference%20Engine%20_%20Reader%20View.pdf
https://agenda.infn.it/event/28874/contributions/169214/attachments/94366/129105/TMVA_SOFIE_ICHEP.pdf
https://github.com/sitongan/sofie_benchmarking

