
Comparison of methods

Conclusions
• Accurate automatic flagging of anomalous lumisections with sufficiently low 

false alarm rate.
• A few anomalies found in previously manually certified data, traced down to 

high voltage tests and beam dump effects.
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Data quality monitoring and data certification at CMS

• Goals:   optimal usage of the LHC delivered luminosity.
filter compromised data from certified data.

• Data quality monitoring: spot detector issues in real time.
• Data certification: certify data as good quality for physics analyses.
• Current manual procedure has some disadvantages:

• Very labour intensive.
• Sensitive to visualization details and human errors.
• Coarse time granularity (per run instead of per luminosity section).

Future developments

• Further validation and commissioning in Run-3 data.
• Implement in online DQM software for live data taking (see talk from A.Harilal).
• Further tune the nanoDQMIO content.
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Case study: pixel trackerStrategies for anomaly detection

Challenges:
• No reliably labeled data for training and testing
• Large class imbalance (most data is good).
• Non-exhaustive definition of “bad” monitoring element;

impossible to foresee or simulate all potential failure scenarios.

Solution:
• Use unsupervised learning.
• Employ anomaly detection methods.

Common infrastructure

Input data

Requirements:
• Similar to what is used in manual DQM/DC.
• Per luminosity section time granularity.
• Sufficiently small size on disk.
• Centrally available to the whole collaboration.

Solution: nanoDQMIO
• Subset of all DQM/DC monitoring elements.
• Per-lumisection saving.
• Available via central data aggregation system.

Preprocessing and resampling

Model training on GPU

Output score summary
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• Collaboration between CERN 
OpenLab and IBM.

• Large model training on GPU-
equipped machines.

• Allows experimenting with large 
convolutional autoencoder
models.

Raw Preprocessed ResampledRaw

• Similar output format as 
manual DQM/DC
in Run Registry.

• Will allow comparison and 
further investigation.

Figure from CMS-PHO-EVENTS-2020-025 (link)

[Work in progress!]
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