

An Autoencoder-based Online Data Quality Monitoring for CMS ECAL

<u>Abhirami Harilal</u>, Kyungmin Park, Michael Andrews, Manfred Paulini

On behalf of the CMS Collaboration

October 27, 2022

@ACAT 2022

CMS Electromagnetic Calorimeter (ECAL)

ACAT 2022

• Measures the energy, time and position of electrons and photons as well as EM jet fraction.

—> crucial to the *discovery and property measurements of the Higgs Boson*

 75,848 scintillating PbWO4 crystals arranged in a central barrel (EB) section closed by two endcaps (EE+ and EE-)
 PbWO4 crystals with

PbWO4 crystals with photodetectors

Data Quality Monitoring in ECAL

ACAT 2022

- Data Quality Monitoring (DQM) is a tool to identify and localize detector anomalies that can affect detector performance and quality of data taken.
- Online DQM in CMS ECAL consists of a set of histograms that are populated based on a quick first-pass analysis of a selection of events seen by the detector.
 - **Highly time-sensitive:** must provide feedback to detector experts in real-time to intervene on detector problems ASAP.
 - Time granularity of one luminosity section (LS) ~ 23 seconds.

Ecal experts monitoring DQM at CMS Control Room during Run3 start up

DQM plots in ECAL

In the quality histogram:

GREEN = good

RED = bad

BROWN = known problem

YELLOW = **no data** (which may or may not be problematic – depends on context).

The Need for Machine Learning

- **Problem:** anomalies come in all shapes and sizes —> impossible to anticipate all possible failure modes.
- Semi/Unsupervised ML as potential solution: robust anomaly detection & localization.
- Autoencoders: Learn patterns of good data and make its own quality assessments, eliminating the need for hand coded rules for every possible component geometry in the ECAL.
- More adaptable to changing running conditions and experimental setup.
 —>This method can be possibly extended to other subsystems and experiments outside of CMS.

Other efforts in Machine Learning for DQM in CMS

- ML based DQM already in production for CMS DT (<u>arXiv:1808.00911</u>)
- Previous attempt in ECAL using Auto encoder (EPJ Web of Conferences 214, 01007 (2019))
- Various other subsystems in CMS like RPC [link], Tracker [link], HCAL are also exploring ML based anomaly detection.
- The work presented here for ECAL DQM is available in CMS-DPS-2022/043

Auto Encoder (AE) for Anomaly Localization

Input image

Output AE reconstructed image

The reconstruction loss (squared error) is computed which measures how well the output matches the input.

Squared Error
$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2$$
x is input data,Reconstruction Loss: $\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2$ x is reconstructed data

Abhirami Harilal

ACAT 2022

Training Strategy

- Use occupancy maps of ECAL barrel (EB) and endcaps (EE) digitized hits at tower-level (5x5 crystals)
 - ➡ 1 image = 1 LS with constant no.of events: actual events per LS may vary during data taking. This is accounted for during deployment.
 - ➡ Normalize input images w.r.t PileUp (No.of interactions per bunch crossing): consistent quality interpretation vs. LHC luminosity.
- **Dataset:** Certified GOOD runs from 2018.
- **Network: ResNet** for both encoding and decoding.
- **Model**: Separate AE models trained for EB, EE+ and EE-.
- **Training set:** 90k GOOD images, **Validation set:** 10k GOOD images + same 10k images with "fake" anomalies introduced, **Test set:** real Run2 and Run3 anomalies.

Spatial Response Correction

ACAT 2022

- Normalize loss map w.r.t average ECAL occupancy response to "flatten" anomaly response
 - \rightarrow Dead towers in central η region should be interpreted as equally anomalous as dead tower at high η

Average EB occupancy response

Time Correction

- Exploit time-dependent nature of anomalies
 - Real anomalies persist with time, fluctuations are transient.
 - Multiply loss map of the last two LS with current one
 —> Lag of about ~1min: very reasonable trade-off, can be tuned.

Results, Part I Testing on Fake Anomaly Scenarios

Results on Fake Anomalies

ACAT 2022

Performance Metric: False Discovery Rate (FDR) at 99% anomaly detection

If we choose a threshold to catch 99% of the anomalies, what fraction of towers labelled BAD will be due to GOOD towers

• What fraction of shifter calls will be **false alarms** ?

FDR at 99% anomaly detection								
Scenario	Missing Supermodule	Zero Occupancy Tower		Hot Tower (10% hot for EB, 20% hot for EE)				
	Barrel	Barrel	EE+	EE-	Barrel	EE+	EE-	
No correction	3.6 %	51 %	86 %	87 %	2.8 %	0.01 %	<1/30k	
After <i>spatial</i> correction	3.1 %	49 %	13 %	14 %	2.9 %	0.06 %	0.05 %	
After <i>spatial and time</i> correction	0.13 %	4.1 %	5.6 %	6.3 %	<1/10k	<1/30k	<1/30k	
	C	Mostly due t ontaminating (Se	to actual and certified GO ee Backup).	omalies OD data.	~10 ⁴ is the size of the validation set			

• In real anomalies, we demonstrate that the AE catches towers with non zero, low occupancy. (See p18)

Results, Part II Testing on Real Anomalies

Input image

CMS

EΒ

Final Quality plotCarnegie Mellon University

2018 (13 TeV) 3.0

2.5

AE Loss

1.0

0.0

64

Case 3: EE+ Dead towers.

iφ_{tow}

ACAT 2022

Abhirami Harilal

Results, Part III Run 3 commissioning for Barrel

Run3 Commissioning in ECAL Online DQM Physics

Carnegie Mellon University

ACAT 2022

- The MLDQM is now deployed in the ECAL Online DQM CMSSW workflow for ECAL Barrel, as a new ML quality plot from the Autoencoder.
 - Model Inference: Trained <u>Pytorch</u> model exported to <u>ONNX</u> and run in production using 0 **ONNX Runtime**.
 - The Endcaps implementation is undergoing further tests and fine tuning before deployment. 0
- Doing really well on live data from the detector.

ML Quality plot from ECAL Online DQM during a Run3 run

Detects potential new bad towers

- A tower that had **low occupancy** in several LSs, but not in all semi-transient anomaly, but still shows up with low occupancy in the average occupancy in Run3.
 Could be a **degrading channel**.
- Introduce a new plot: occupancy map of bad towers accumulating over a run, to see how frequently they are flagged by the AE.

—> help experts keep an eye on them.

Summary and Plans

ACAT 2022

- We have developed a **robust ML based anomaly detection & localization system** for ECAL Barrel and Endcaps.
 - First application to exploit time-dependent nature of anomalies for an order of magnitude improvement in performance.
 - Detects anomalies of **varying degrees**, shapes and sizes.
 - Identifies potential bad towers and degrading channels
 —> helps to monitor detector health.
 - Does not replace existing DQM, but serves as an additional check for improved detection and reducing false alarms.
- MLDQM for ECAL Barrel is now deployed in the ECAL Online DQM CMSSW workflow, and performing well on live data from Run3.
 - ▶ For the Endcaps, further tests are on-going before deployment in DQM CMSSW workflow.
- This AE based method can be generalized and extended to other experiments.

ACAT 2022

Thank You!

BACKUP

What contributes to the remaining FDR?

Typical tower-level loss distribution over several LSs:

- The "false positives" in the tail of the good towers, with higher loss are actual anomalies in the detector.
- These correspond to bad towers which were not masked in DQM, because it didn't happen often enough —> not considered fatal.

Masked known bad channels

Abhirami Harilal

Baseline for comparison

• Baseline Loss per tower:

Compare each tower occupancy $t_{\varphi,\eta}$ to η -ring average occupancy $\langle t_{\eta} \rangle$. Define baseline tower $loss_{\varphi,\eta} = |t_{\varphi,\eta} - \langle t_{\eta} \rangle|$

EB Results with baseline study

ACAT 2022

Performance Metric: False Discovery Rate (FDR) at 99% anomaly detection

If we choose a threshold to catch 99% of the anomalies, what fraction of towers labelled BAD will be due to GOOD towers (i.e. what fraction of shifter calls will be false alarms)?

Scenario 1: Missing Super modules

Scenario 2: Dead tower

	FDR		FDR			
Baseline	14%	Baseline	90%			
Baseline after time corr	5.9 %	Baseline after time corr	80 %			
AE before time correction	3.1%	AE before time	49%			
AE after time correction	0.13 %	AE after time correction	4.1 %			
Scenario 3:	Hot tower 10% hot	t NAcc				
	FDI	R contar	contaminating certified GOOD data.			
Baseline	5.2%	%				
Baseline after time cor	r < 1/1	104				
AE before time correcti	on 2.9%	$\frac{7}{0}$ 104 is the	aire of the			
AE after time correctio	on <1/1	10 ⁴ validat	~10* is the size of thevalidation set			

Abhirami Harilal

Preparing the data: PU normalization

50

1.25

1.50

1.75

2.00

60

- Crucial step: Normalize images wrt PU to improve sensitivity and generalization over different fill conditions.
- Pileup (PU) dependence is removed -> as occupancy is determined by the selective readout and PU, while the selective readout is not PU dependent

Abhirami Harilal

Abhirami Harilal

ACAT 2022