Analysis Grand Challenge

Alexander Held (University of Wisconsin–Madison)
Oksana Shadura (University Nebraska–Lincoln)

ACAT 2022: https://indico.cern.ch/event/1106990

AGC: two components

The IRIS-HEP Analysis Grand Challenge (AGC) has two components:

Defining a physics analysis task of realistic HL-LHC scope & scale

- Developing an analysis pipeline that implements this task
 - Finding & addressing performance bottlenecks & usability concerns

AGC: how we envisioned it initially

An "integration exercise" for IRIS-HEP

- Demonstrate method for handling HL-LHC data pipeline requirements
 - Large data volumes + bookkeeping
 - Handling of different types of systematic uncertainties
 - Use of reduced data formats (PHYSLITE / NanoAOD), aligned with LHC experiments
- Aiming for "interactive analysis": turnaround time of ~minutes or less
 - Made possible by highly parallel execution in short bursts, low latency & heavy use of caching
- Specify all analysis details to allow for re-implementations and re-use for benchmarking
- Execution on Analysis Facilities

AGC: analysis task

Community benchmark

- Analysis task: ttbar cross-section measurement in single lepton channel
 - Includes simple top reconstruction
 - Captures relevant workflow aspects and can easily be extended
 - E.g. conversion into a BSM search
 - Analysis task prominently features handling of systematic uncertainties
- Analysis is based on Run-2 CMS Open Data (~400 TB of MiniAOD available)
 - Open Data is crucial: everyone can participate
 - Currently using 4 TB of ntuple inputs (pre-converted, ~1B events before cuts)
- Goal of setup is showing functionality, not discovering new physics
 - Want to capture workflow; use made-up tools for calibrations & systematic uncertainties

An AGC implementation: software stack

Involves large number of packages from IRIS-HEP and partners

Analysis pipeline

- Pipeline setup
 - ServiceX delivers columns following declarative func_adl request
 - coffea orchestrates distributed event processing & histogram production
 - Using uproot, awkward-array, hist
 - Visualization with hist & mplhep
 - Statistical model construction with cabinetry & inference with pyhf
- Everything is openly developed (<u>IRIS-HEP AGC repository</u>)
 - Including categorization of datasets in terms of role in AGC demonstrator
- Will be executed on various partner facilities: *University Nebraska-Lincoln, UChicago, FNAL, BNL, others*

From workspace and suppose to likelihoods Selection & Systematic uncertainties Prom workspace to likelihoods From workspace to likelihoods Prom workspace to likelihoods

Other AGC implementations:

- ROOT RDF (Andrii Falko, Enrico Guiraud):
 andriiknu/RDF/
- Julia (Jerry Ling):
 Moelf/LHC AGC.il

Data management tools

Relying on DOMA R&D for fast physics analysis turnaround

Expect **key contributions to improved performance** from three IRIS-HEP DOMA projects:

XCache

ServiceX

Skyhook

- Data Factory/source
 (e.g. TO or sim)

 Data Store/Lake

 Intelligent Data
 Delivery Service (IDDS)

 Data Cache

 Compute Nodes/
 Data Sinks

 ServiceX

 XCache

 XCache

 XCache

 XCache

 XCache

 XCache

 XCache

 XCache
- XCache XRootd file-based caching proxy used for regional / site caches to store requested on-demand datasets (reducing latency & WAN traffic)
- <u>ServiceX</u> data extraction and delivery delivery service ("column-on-demand" service)
- <u>Skyhook DM</u> an extension of the Ceph distributed storage for the scalable storage of tables and for offloading common data management operations to them (selection, projection, aggregation, and indexing, as well as user-defined functions)

R&D on Analysis Facilities

Rapid prototyping on coffea-casa AF

- Glueing different areas of IRIS-HEP (AS, SSL & DOMA) together: an AGC execution environment
- Providing environment to explore analysis workflows at scale

Garhan Attebury, Brian
Bockelman, Ken Bloom,
Carl Lundstedt, John
Thiltges, Oksana
Shadura, Andrew
Wightman

AGC + local files

Local data (cephfs) coffea pyhf

Columns from flat ntuples processed by coffea

Behavior in idealistic setup

UChicago Coffea-casa AF @ UChicago ATLAS AF (coffea with FuturesExecutor): reading locally stored files and scaling on local machine (hyperthreading after 48 cores)

AGC: scale-out

Processing 1B events

Columns from flat ntuples processed by coffea

UNL Coffea-casa AF @ UNL CMS Tier-2 (Coffea with DaskExecutor): stable scaling up to 1B events on Tier-2 job queue and efficient scheduling

Results: scaling behavior

coffea cabinetry pyhf

Columns from flat ntuples processed by coffea

I/O and number of cores

UNL Coffea-casa AF @ UNL CMS Tier-2 (Coffea with DaskExecutor): stable scaling to 400 cores events with increasing number of branches (bigger fraction of data to read)

ServiceX: Column-on-demand service

- ServiceX could bring further performance improvements
 - Initial event filter reduces number of events that need to be processed again.
 - Repeated columnar processing can read cached data
- New interesting workflow to be investigated: column addition from parent MiniAOD/PHYS datasets

Columns from NanoAOD / PHYSLITE and request column from MiniAOD / PHYS

Extending the analysis task & pipeline

Plans and wishlist

- Expanded analysis task
 - Machine learning component in workflow
 - Further increased set of systematic uncertainties, more data to process
- Prototype new functionality: on-demand column delivery to enhance information in reduced data formats
- Longer term goal: differentiable analysis pipeline to investigate end-to-end analysis optimization

Conclusions and next steps

- Promising first performance results obtained at multiple facilities
 - Execution of full AGC pipeline(s) next summer on various facilities (including diverse hardware configurations)
- Could be used as a baseline benchmark for other communities
- Stay in touch via our mailing list
 - analysis-grand-challenge@iris-hep.org (sign up: Google group)

Backup

AGC: give it a try!

We are making it easy for you to try out our setup

- One click to get PyHEP notebook in Binder environment
 - Try it out today!
- You can also use the <u>UNL Open Data coffea-casa</u>
 - Or <u>SSL</u> (ATLAS members), or your favorite facility
 - This allows you to scale up (limited on Binder)
 - Everything is available in the <u>AGC repository</u>

