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Discovering new physics and performing more accurate measurements due to the improved sensitivity level...
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Software reconstruction: digital signals in each detector must be processed to provide
information about particles produced in the proton-proton collisions and successive decays and
interaction with the absorber material.

» In the PU200 scenario, such a task becomes much harder
» Massive amount of computing resources required

» Advent of heterogeneous computing!
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The heterogeneous computlng scenario °

Modern computing farms and data centers rely on heterogeneous architectures
= CPU

= GPUs = hardware accelerators

» HEP approach: offloading part of the reconstruction to GPUs for parallel execution

% Many vendors = many programming languages = many versions of the same code!!!
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Performance portability w1thx alpaka

¢ Performance portability libraries have become an interesting solution

= Write code once
= Compile for different backends
= Execute on target platform

»Not all the technologies provide close-to-native backend performance

¢ Portable code can be easily maintained and support new accelerators

¢ CMS choice for Run 3: a | /Ba ka

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 6




Alpaka

al~aka

* Developed and maintained at HZDR (Helmholtz-Zentrum-Dresden-Rossendorf) and CASUS (Center
for Advanced Systems Understanding)

Abstraction Library for Parallel Kernel Acceleration

C++ header-only library (currently on C++17)

Supports a wide range of compilers (g++, clang, ...)

Several backends supported

= CPU serial and parallel execution (std::thread or TBB)
= NVIDIA GPU (CUDA)
= AMD GPU (HIP/ROCm)

» Intel GPU and FPGAs (SYCL) under development

* For more information, check Jan Stephan’s poster “Performance portability with
alpaka” on Thursday
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CLUstering of Energy (CLUE): fast 2D clustering algorithm developed for
the future CMS-HGCAL detector

» Based on energy density

Builds small clusters (~10 RecHits)

Fully ported to GPU (CUDA)

Uses a tiled data structure that fully exploits the detector granularity and
allows fast querying of neighbor cells

YV V V

M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, C. Seez, CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, Frontiers in Big Data, 3, 2020.
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M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, C. Seez, CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, Frontiers in Big Data, 3, 2020.
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ce |ALPAKA_ACCELERATOR_NAMESPACE {
CLUEA1goCUDA {

public: ;s CLUEAlgoAlpaka {

NnStr COX
C 1Struc 1) ¢
CLUEA1goCUDA() = delete; CLUEAlgoAlpaka() = delete;
expli CLUEAlgoCUDA(float const &dc, float const &rhoc, fl C &outlierDeltaFactor, cudaStream_t stream) explicit CLUEAlgoAlpaka(fl
d_points{stream}, dc_{dc}, rhoc_{rhoc}, outlierDeltaFactor_{outlierDeltaFactor}, stream_{stream} {

const &outlierDeltaFactor,
init_device(); Queue stream,
uint32_t const &numberOfPoints)
: d_points{stream, numberOfPoints},
queue_{std::move(stream)},
dc_{dc},
rhoc_{rhoc},
X s outlierDeltaFactor_{outlierDeltaFactor} {
void makeClusters(PointsCloud const &host_pc); o O o)

~CLUEA1goCUDA() = defal

PointsCloudCUDA d_points;
~CLUEAlgoAlpaka() = default;
LayerTilesCUDA *hist_;
cms::cuda: :VecArray<int, maxNSeeds> *seeds_;
i PointsCloudAlpaka d_points;
cms::cuda: :VecArray<int, maxNFollowers> *followers_;

void makeClusters(PointsCloud c

LayerTilesAlpaka<AcclD> *hist_;
private: cms: :alpakatools::VecArray<int, maxNSeeds> *seeds

=

a cms: :alpakatools::VecArray<int, maxNFollowers> *followers_;
oat dc_;

loat rhoc_; private:
float outlierDeltaFactor_; Queue queue_;

I0at dc_;
cudaStream_t stream_ = nullptr; float rhoc_;

cms::cuda::device::unique_ptr<LayerTilesCUDA[]> d_hist; float outlierDeltaFactor_;
cms::cuda: :device: :unique_ptr<cms::cuda::VecArray<int, maxNSeeds>> d_seeds; : . . .
. . i std::optional<cms::alpakatools::device_buffer<Device, LayerTilesAlpaka<AcclD>[]>> d_hist;
cms::cuda: :device: ‘unique_ptr<cms: cuda: 'VeCArray(l"L' maxNFollowers>[]> d—f°11°wer5' std::optional<cms::alpakatools::device_buffer<Device, cms::alpakatools::VecArray<int, maxNSeeds>>> d_seeds;
::optional<cms::alpakatools::device_buffer<Device, cms::alpakatools::VecArray<int, maxNFollowers>[]>> d_followers;
private methods
void init_device(); d init_device();

void setup(PointsCloud const &host_pc); 52 Ctsetuprolntscloudiconstizhost pel;

R NAMESPACE
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Porting CLUE from CUDA to Alp

namespace ALPAKA_ACCELERATOR_NAMESPACE {

class PointsCloudCUDA {
public:

PointsCloudCUDA() = delete; public:
PointsCloudAlpaka() = delete;

explicit PointsCloudAlpaka(Queue stream, int nPoints)

class PointsCloudAlpaka {

explicit PointsCloudCUDA(cudaStream_t stream, int nPoints)
// input variables
: x{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, //input variables

y{cms: :cuda: :make_device_unique<float[]>(nPoints, stream)}, : x{cms::alpakatools: :make_device_buffer<float[]>(stream, nPoints)},
layer{cms::cuda: :make_device_unique<int[]>(nPoints, stream)}, y{cms::alpakatools: :make_device_buffer<floatl[]l>(stream, nPoints)},
weight{cms::cuda: :make_device_unique<float[1>(nPoints, stream)}, layer{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
// result variables weight{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
rho{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, //result variables
delta{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, rho{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
nearestHigher{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, delta{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
clusterIndex{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, nearestHigher{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
isSeed{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, clusterIndex{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
view_d{cms::cuda::make_device_unique<PointsCloudCUDAView>(stream)} { isSeed{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},

auto view_h = cms::cuda::make_host_unique<PointsCloudCUDAView>(stream); view_d{cms::alpakatools::make_device_buffer<PointsCloudAlpakaView>(stream)} {

view_h->x = x.get(); auto view_h = cms::alpakatools::make_host_buffer<PointsCloudAlpakaView>(stream);

view_h->y = y.get(); view_t=>x = x.datal);

view_h->layer = layer.get(); view_h->y = y.data();

view_h->weight = weight.get(); view_h->layer = layer.data();

view_h->rho = rho.get(); view_h->weight = weight.data();

view_h->delta = delta.get(); view_h->rho = rho.data();

view_h->nearestHigher = nearestHigher.get(); view h->delta = delta.data():
— - o I

view_h—>clusterIndex = clusterIndex.get(); view_h->nearestHigher = nearestHigher.data();

view_h->isSeed = isSeed.get(); view_h->clusterIndex = clusterIndex.data();
view_h->isSeed = isSeed.data();
cudaMemcpyAsync(view_d.get(), view_h.get(), sizeof(PointsCloudCUDAView), cudaMemcpyHostToDevice, stream);

alpaka::memcpy(stream, view_d, view_h);
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Porting CLUE from CUDA to Alpaka - 3

void KernelComputeHistogram(std::array<LayerTilesSerial, NLAYERS> &d_hist, PointsCloudSerial &points) {

for (unsigned int i = @; i < points.n; i++) {
push index of points into tile CPU serial: loops over all the
d_hist[points.layer[i]].fill(points.x[i], points.y[il], 1i); pOintS

__global__ void kernel_compute_histogram(LayerTilesCUDA* d_hist, pointsViewx d_points, int numberOfPoints) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < numberOfPoints) { GPU CUDA.: eaCh thread
P f 1nde x points into . . .
d_hist[d_points->layer[i]].fill(d_points->x[i], d_points->y[i], i); execute the same instruction

} with a different point
.

struct KernelComputeHistogram {

template <typename TAcc> .
ALPAKA_FN_ACC |void |operator()(const TAcc &acc, CPU/GPU alpaka Same as CUDA’
LayerTilesAlpaka<AcclD> *d_hist, W|th a user'deﬂned helper funCtIOI’l
pOLERy e e Do that accounts for an additional
uint32_t const &numberOfPoints) const - ”r .
push index of points into tiles elements” abstraction layer
cms: :alpakatools::for_each_element_in_grid( n Work leISIOI’] Organized in
acc, numberOfPoints, [&](uint32_t i) { d_hist[d_points->layer[i]].fill(d_points->x[i], d_points->y[i], 1); }); .
Grids-Blocks-Threads-Elements
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CLUE - Performance plot

CLUE 2D performance - 10000 events
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CLUE 3D (WIP)

3D version of the CLUE algorithm to reconstruct
particle showers in multi-layer high granularity
calorimeters

Builds 3D objects starting from clusters built with
CLUE 2D

Serial implementation currently used by the HGCAL ot Qe
reconstruction framework (TICL) in CMSSW 1\\;:9‘&"{2{
Ported to alpaka and can run on GPU now! ¥ ::'\é‘\; A
For more information, check Wahid Redjeb’s poster m\l\ SR

“The TICL reconstruction at the CMS Phase-2 AR

\

High Granularity Calorimeter Endcap” on Thursday
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Throughput (ev/s)

CLUE 3D performance - 10000 events

CLUE 3D - Performance plot
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» Alpaka with the serial backend scales
linearly with the number of threads
(concurrent events) the same way as the
native serial implementation

» Alpaka with the cuda backend provides a a
high throughput of ~200 events/second

= Compared with serial and the same number
of threads (i.e. 2), throughput is more than
20 times higher

= Also for CLUE 3D, throughput on GPU seems
limited by 1/0 operations
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Work in progress and future Fplans

% CLUE has been ported to another performance portability library:

SYCL/oneAPI (credits to Luca Ferragina and Juan Jose Olivera Loyola)

= Performance under study

= CLUE 3D expected to be ported as well

= For more information, check Aurora Perego’s poster "Experience in
SYCL/oneAPI for event reconstruction at the CMS experiment” on Tuesday

% A python library named CLUEstering (credits to Simone Balducci and

Alessandro Mancini) has been developed
= Generalization of CLUE to N dimensions
= Python binding to C++ serial implementation
= Expected binding to C++ alpaka implementation in future
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Conclusions

% The alpaka performance portability library is an interesting solution in the
era of heterogeneous computing
= Write the code once, compile it, and run it on different backends!
= Performance close to native implementations
= New backends are planned and/or in development (i.e. SYCL)
% CLUE represents a useful testbed for performance portability solutions
= Simple application
= Tests have been made with both alpaka and SYCL/oneAPI
% CLUE 3D is the first algorithm, within the HGCAL-TICL reconstruction
framework, that has been ported directly from serial C++ to alpaka
= Optimizations still ongoing

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 17
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CLUE repository: heterogeneous-clue
CLUE original paper: CLUE

email: cms-patatrack@cern.ch



https://github.com/cms-patatrack/heterogeneous-clue
https://doi.org/10.3389/fdata.2020.591315
mailto:cms-patatrack@cern.ch
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Porting to Alpaka: what to know

Programming strategy inspired by CUDA
= Easy porting CUDA-to-alpaka
= Same way of organizing the work division — Grids-Blocks-Threads + additional
abstraction layer Elements that can be exploited for vectorization
Performance is close to the native backend
= No overhead with respect to native CUDA or HIP/ROCm

Alpaka objects behave like shared_ptrs - must be passed by value or
const reference

native buffers (vectors, arrays, ...) must be ported to alpaka buffers,
which don’t have a default constructor

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library
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Kernel launch comparison

kernel_compute_histogram<<<gridSize, blockSize, @, stream_>>>(d_hist.get(), d_points.view(), host_pc.x.size()); CUDA baseline

auto WorkDivlD = cms::alpakatools::make_workdiv<AcclD>(gridSize, blockSize); alpaka- ker—nels are
| |
alpaka: :enqueue(

queue_, enqueued in task

alpaka::createTaskKernel<AcclD>(WorkDivlD, KernelComputeHistogram(), hist_, d_points.view(), d_points.n)); ObJeCtS
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