
Performance	study	of	the	CLUE	
algorithm	with	the	alpaka library

Andrea	Bocci,	Tony	Di	Pilato*,	Luca	Ferragina,	Matti	Kortelainen,	Juan	Jose	
Olivera	Loyola,	Felice	Pantaleo,	Aurora	Perego,	Marco	Rovere,	Wahid	Redjeb



High	Luminosity	LHC

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 2

Discovering	new	physics	and	performing	more	accurate	measurements	due	to	the	improved	sensitivity	level…

Average	pileup:	200

We’re	currently	here

New	and	
upgraded	
detectors



The	CMS	Phase-2	challenge

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 3

𝒕𝒕̅ event	with	pileup	200 Future	High	Granularity	Calorimeter	
for	the	CMS	experiment



The	software	reconstruction	challenge

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 4

Software	reconstruction: digital	signals	in	each	detector	must	be	processed	to	provide	
information	about	particles	produced	in	the	proton-proton	collisions	and	successive	decays	and	
interaction	with	the	absorber	material.

Ø In	the	PU200	scenario,	such	a	task	becomes	much	harder

Ø Massive	amount	of	computing	resources required

Ø Advent	of	heterogeneous	computing!	



The	heterogeneous	computing	scenario

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 5

Modern computing	farms	and	data	centers	rely on	heterogeneous architectures
§ CPU
§ GPUsà hardware	accelerators

Ø HEP	approach:	offloading part	of	the	reconstruction to	GPUs for	parallel execution

vMany	vendors	àmany	programming	languages	àmany	versions	of	the	same	code!!!



Performance	portability	with	alpaka

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 6

v Performance	portability	libraries	have	become	an	interesting	solution
§ Write	code	once
§ Compile	for	different	backends
§ Execute	on	target	platform
ØNot	all	the	technologies	provide	close-to-native	backend	performance

v Portable	code	can	be	easily	maintained	and	support	new	accelerators

v CMS	choice	for	Run	3:



Alpaka

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 7

• Abstraction	Library	for	Parallel	Kernel	Acceleration
§ Developed	and	maintained	at	HZDR (Helmholtz-Zentrum-Dresden-Rossendorf)	and	CASUS (Center
for	Advanced	Systems	Understanding)

• C++	header-only	library	(currently	on	C++17)

• Supports	a	wide	range	of	compilers	(g++,	clang,	…)

• Several backends	supported
§ CPU	serial	and	parallel	execution	(std::thread	or	TBB)
§ NVIDIA	GPU	(CUDA)
§ AMD	GPU	(HIP/ROCm)
§ Intel	GPU	and	FPGAs	(SYCL)	under	development

• For	more	information,	check	Jan	Stephan’s	poster	“Performance	portability	with	
alpaka”	on	Thursday



A	real	application:	the	CLUE	algorithm

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 8

CLUstering of	Energy	(CLUE):	fast	2D	clustering	algorithm developed for	
the	future	CMS-HGCAL	detector
Ø Based on	energy	density
Ø Builds	small	clusters	(~10	RecHits)
Ø Fully ported to	GPU	(CUDA)
Ø Uses a	tiled data	structure that fully exploits	the	detector	granularity and	

allows fast	querying of	neighbor cells

M.	Rovere,	Z.	Chen,	A.	Di	Pilato,	F.	Pantaleo,	C.	Seez,	CLUE:	A	Fast	Parallel	Clustering	Algorithm	for	High	Granularity	Calorimeters	in	High	Energy	Physics,	Frontiers	in	Big	Data,	3,	2020.



CLUE	procedure

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library

M.	Rovere,	Z.	Chen,	A.	Di	Pilato,	F.	Pantaleo,	C.	Seez,	CLUE:	A	Fast	Parallel	Clustering	Algorithm	for	High	Granularity	Calorimeters	in	High	Energy	Physics,	Frontiers	in	Big	Data,	3,	2020.

Step	0: arrange	input	data	in	“tiles”	(spatial	indexing)
a. calculate	local	energy	density
b. find	nearest	higher	and	calculate	its	distance
c. find	seeds	and	outliers
d. assign	cluster	indices

Each	of	these	steps	can	be	written	as	a	function	(or	kernel)	
and	perform	the	same	operation	on	each	point

9



Porting	CLUE	from	CUDA	to	Alpaka - 1

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 10

Pointers to device memory 
passed to kernels

Executes the task (similar to cudaStream)

User-defined namespace that contain all 
the needed symbols (Platform , Device, 
Queue, BufferType)

alpaka buffers don’t have a default constructor



Porting	CLUE	from	CUDA	to	Alpaka - 2

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 11

Allocate memory for host view

Copy view from host to device

Allocate memory for alpaka buffers



Porting	CLUE	from	CUDA	to	Alpaka - 3

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 12

CPU serial: loops over all the 
points

GPU CUDA: each thread 
execute the same instruction 
with a different point 

CPU/GPU alpaka: same as CUDA, 
with a user-defined helper function 
that accounts for an additional 
“elements” abstraction layer
§ Work division organized in 

Grids-Blocks-Threads-Elements

Equivalent to 
CUDA __global__

Called when launching the kernel



CLUE	- Performance	plot	

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 13

Ø Alpakawith	the	serial backend	scales	
linearly	with	the	number	of	threads	
(concurrent	events),	the	same	way	as	the	
native	serial	implementation

Ø Alpakawith	the	cuda backend	has	the	
same	scaling	of	the	native	cuda
implementation.	Two	points	are	under	
investigation:
§ Other	applications	do	not	show	that	

alpaka is	faster	than	cuda
§ It	seems	that	I/O	operations	and	the	

computing	capability	of	the	GPU	are	
limiting	the	scaling	for	threads	>	4



CLUE	3D	(WIP)

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 14

• 3D version of the CLUE algorithm to reconstruct 
particle showers in multi-layer high granularity 
calorimeters

• Builds 3D objects starting from clusters built with 
CLUE 2D

• Serial implementation currently used by the HGCAL 
reconstruction framework (TICL) in CMSSW

• Ported to alpaka and can run on GPU now!
• For more information, check Wahid Redjeb’s poster 

“The TICL reconstruction at the CMS Phase-2 
High Granularity Calorimeter Endcap” on Thursday



CLUE	3D	– Performance	plot

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 15

Ø Alpakawith	the	serial backend	scales	
linearly	with	the	number	of	threads	
(concurrent	events)	the	same	way	as	the	
native	serial	implementation

Ø Alpakawith	the	cuda backend	provides	a	a	
high	throughput	of	~200	events/second
§ Compared	with	serial	and	the	same	number	

of	threads	(i.e.	2),	throughput	is	more	than	
20	times	higher

§ Also	for	CLUE	3D,	throughput	on	GPU	seems	
limited	by	I/O	operations	



Work	in	progress	and	future	plans

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 16

v CLUE has been ported to another performance portability library: 

SYCL/oneAPI (credits to Luca Ferragina and Juan Jose Olivera Loyola)
§ Performance under study
§ CLUE 3D expected to be ported as well
§ For more information, check Aurora Perego’s poster “Experience in 

SYCL/oneAPI for event reconstruction at the CMS experiment” on Tuesday

v A python library named CLUEstering (credits to Simone Balducci and 

Alessandro Mancini) has been developed
§ Generalization of CLUE to N dimensions
§ Python binding to C++ serial implementation
§ Expected binding to C++ alpaka implementation in future 



Conclusions

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 17

v The alpaka performance portability library is an interesting solution in the 

era of heterogeneous computing
§ Write the code once, compile it, and run it on different backends!

§ Performance close to native implementations 

§ New backends are planned and/or in development (i.e. SYCL)

v CLUE represents a useful testbed for performance portability solutions
§ Simple application

§ Tests have been made with both alpaka and SYCL/oneAPI

v CLUE 3D is the first algorithm, within the HGCAL-TICL reconstruction 

framework, that has been ported directly from serial C++ to alpaka
§ Optimizations still ongoing



Thanks	for	your	attention

CLUE	repository:	heterogeneous-clue
CLUE	original	paper:	CLUE
email:	cms-patatrack@cern.ch

https://github.com/cms-patatrack/heterogeneous-clue
https://doi.org/10.3389/fdata.2020.591315
mailto:cms-patatrack@cern.ch


Backup



Porting	to	Alpaka:	what	to	know

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library

• Programming strategy inspired by CUDA
§ Easy porting CUDA-to-alpaka

§ Same way of organizing the work division – Grids-Blocks-Threads + additional 
abstraction layer Elements that can be exploited for vectorization

• Performance is close to the native backend
§ No overhead with respect to native CUDA or HIP/ROCm

• Alpaka objects behave like shared_ptrs à must be passed by value or 
const reference

• native buffers (vectors, arrays, …) must be ported to alpaka buffers, 
which don’t have a default constructor

20



Kernel	launch	comparison

Tony	Di	Pilato Performance	study	of	the	CLUE	algorithm	with	the	alpaka library 21

alpaka: kernels are 
enqueued in task 
objects

CUDA baseline


