V1, CERN CASVUS
1, openlab c,:; R

Performance study of the CLUE
algorithm with the alpaka library

Andrea Bocci, Tony Di Pilato’, Luca Ferragina, Matti Kortelainen, Juan Jose e
Olivera Loyola, Felice Pantaleo, Aurora Perego, Marco Rovere, Wahid Redjeb j

=1 CERN CASVUS
1, openlab) o

LARGE HADRON COLLIDER

LHC We're currently here HL-LHC

13 7oy DD Ls2 13.6 TeV 13.6 - 14 TeV
e

energy
Diodes Consolidation
splice consolidation cryolimit LIU Installation . -
7 TeV 8 TeV button collimators interaction . inner triplet - — LH.C
— R2E project regions Civil Eng. P1-P5 pilot beam radiation limit installation
2020 2022 2025 | 202 | 2027 | 2028 | 2040
5 to 7.5 x nominal Lumi
ATLAS - CMS
experiment upgrade phase 1 ATLAS - CMS
beam pipes 2 x nominal Lumi 2 inal Lumi HL upgrade A il : 200
nominal Lumi ettt ALICE - LHCb I X nomina’ -um! 1 verage piieup:

75% nominal Lumi / upgrade !
' New and
EX3 190 b | upgraded rtegrated IR

detectors luminosity JEOIVR {3

Discovering new physics and performing more accurate measurements due to the improved sensitivity level...

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 2

}
-5}
-
[}
B
s
nmm S NN m Mm
(Vi R
S 3
@ S a
C
=
20 s
= o
O QO
o &
>
|
c
|
o
H
S
.o m
i
e 5
]9 S
=
=)
B = =
>
D) 3
p— g
=
o
qv) S &
S ©
h N M
Q =
] (&)
) Q
= £
N S, <
= o
>
. b =
D 2 =
L7
-
) = 3
QL =
qv] 2 3
L g
[=
h Ao S
|
5
a® &

=)
)
1]
p—
- p—

Tony Di

Software reconstruction: digital signals in each detector must be processed to provide
information about particles produced in the proton-proton collisions and successive decays and
interaction with the absorber material.

» In the PU200 scenario, such a task becomes much harder
» Massive amount of computing resources required

» Advent of heterogeneous computing!

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

1. CERN CASUS
"- Openlab 'v EEEEEEEEEEEEEEEEE pCAT 2025

SSSSSSSSSSSSSSSSSSSS

The heterogeneous computlng scenario °

Modern computing farms and data centers rely on heterogeneous architectures
= CPU

= GPUs = hardware accelerators

» HEP approach: offloading part of the reconstruction to GPUs for parallel execution

% Many vendors = many programming languages = many versions of the same code!!!

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

=1 CERN CASVUS
.,- = openlab 2 crmone

Performance portability w1thx alpaka

¢ Performance portability libraries have become an interesting solution

= Write code once
= Compile for different backends
= Execute on target platform

»Not all the technologies provide close-to-native backend performance

¢ Portable code can be easily maintained and support new accelerators

¢ CMS choice for Run 3: a | /Ba ka

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 6

Alpaka

al~aka

* Developed and maintained at HZDR (Helmholtz-Zentrum-Dresden-Rossendorf) and CASUS (Center
for Advanced Systems Understanding)

Abstraction Library for Parallel Kernel Acceleration

C++ header-only library (currently on C++17)

Supports a wide range of compilers (g++, clang, ...)

Several backends supported

= CPU serial and parallel execution (std::thread or TBB)
= NVIDIA GPU (CUDA)
= AMD GPU (HIP/ROCm)

» Intel GPU and FPGAs (SYCL) under development

* For more information, check Jan Stephan’s poster “Performance portability with
alpaka” on Thursday

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 7

CLUstering of Energy (CLUE): fast 2D clustering algorithm developed for
the future CMS-HGCAL detector

» Based on energy density

Builds small clusters (~10 RecHits)

Fully ported to GPU (CUDA)

Uses a tiled data structure that fully exploits the detector granularity and
allows fast querying of neighbor cells

YV V V

M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, C. Seez, CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, Frontiers in Big Data, 3, 2020.

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 8

=0
@ '/;1 -||1- gi?gn d
d ° Step 0: arrange input data in “tiles” (spatial indexing)
O - a. calculate local energy density
° b. find nearest higher and calculate its distance
/ ® , .
— ¢. find seeds and outliers
° Jeo e d. assign cluster indices
° oo Each of these steps can be written as a function (or kernel)
and perform the same operation on each point
a o b e C " d -
.]]
90
Oe
e
Qe . . _ .
O e o @ " "
A . o : .

M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, C. Seez, CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, Frontiers in Big Data, 3, 2020.
9

Performance study of the CLUE algorithm with the alpaka library

Tony Di Pilato

CERN
openlab

ce |ALPAKA_ACCELERATOR_NAMESPACE {
CLUEA1goCUDA {

public: ;s CLUEAlgoAlpaka {

NnStr COX
C 1Struc 1) ¢
CLUEA1goCUDA() = delete; CLUEAlgoAlpaka() = delete;
expli CLUEAlgoCUDA(float const &dc, float const &rhoc, fl C &outlierDeltaFactor, cudaStream_t stream) explicit CLUEAlgoAlpaka(fl
d_points{stream}, dc_{dc}, rhoc_{rhoc}, outlierDeltaFactor_{outlierDeltaFactor}, stream_{stream} {

const &outlierDeltaFactor,
init_device(); Queue stream,
uint32_t const &numberOfPoints)
: d_points{stream, numberOfPoints},
queue_{std::move(stream)},
dc_{dc},
rhoc_{rhoc},
X s outlierDeltaFactor_{outlierDeltaFactor} {
void makeClusters(PointsCloud const &host_pc); o O o)

~CLUEA1goCUDA() = defal

PointsCloudCUDA d_points;
~CLUEAlgoAlpaka() = default;
LayerTilesCUDA *hist_;
cms::cuda: :VecArray<int, maxNSeeds> *seeds_;
i PointsCloudAlpaka d_points;
cms::cuda: :VecArray<int, maxNFollowers> *followers_;

void makeClusters(PointsCloud c

LayerTilesAlpaka<AcclD> *hist_;
private: cms: :alpakatools::VecArray<int, maxNSeeds> *seeds

=

a cms: :alpakatools::VecArray<int, maxNFollowers> *followers_;
oat dc_;

loat rhoc_; private:
float outlierDeltaFactor_; Queue queue_;

I0at dc_;
cudaStream_t stream_ = nullptr; float rhoc_;

cms::cuda::device::unique_ptr<LayerTilesCUDA[]> d_hist; float outlierDeltaFactor_;
cms::cuda: :device: :unique_ptr<cms::cuda::VecArray<int, maxNSeeds>> d_seeds; : . . .
. . i std::optional<cms::alpakatools::device_buffer<Device, LayerTilesAlpaka<AcclD>[]>> d_hist;
cms::cuda: :device: ‘unique_ptr<cms: cuda: 'VeCArray(l"L' maxNFollowers>[]> d—f°11°wer5' std::optional<cms::alpakatools::device_buffer<Device, cms::alpakatools::VecArray<int, maxNSeeds>>> d_seeds;
::optional<cms::alpakatools::device_buffer<Device, cms::alpakatools::VecArray<int, maxNFollowers>[]>> d_followers;
private methods
void init_device(); d init_device();

void setup(PointsCloud const &host_pc); 52 Ctsetuprolntscloudiconstizhost pel;

R NAMESPACE

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 10

_CERN
& openlab

Porting CLUE from CUDA to Alp

namespace ALPAKA_ACCELERATOR_NAMESPACE {

class PointsCloudCUDA {
public:

PointsCloudCUDA() = delete; public:
PointsCloudAlpaka() = delete;

explicit PointsCloudAlpaka(Queue stream, int nPoints)

class PointsCloudAlpaka {

explicit PointsCloudCUDA(cudaStream_t stream, int nPoints)
// input variables
: x{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, //input variables

y{cms: :cuda: :make_device_unique<float[]>(nPoints, stream)}, : x{cms::alpakatools: :make_device_buffer<float[]>(stream, nPoints)},
layer{cms::cuda: :make_device_unique<int[]>(nPoints, stream)}, y{cms::alpakatools: :make_device_buffer<floatl[]l>(stream, nPoints)},
weight{cms::cuda: :make_device_unique<float[1>(nPoints, stream)}, layer{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
// result variables weight{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
rho{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, //result variables
delta{cms::cuda: :make_device_unique<float[]>(nPoints, stream)}, rho{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
nearestHigher{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, delta{cms::alpakatools::make_device_buffer<float[]>(stream, nPoints)},
clusterIndex{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, nearestHigher{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
isSeed{cms::cuda::make_device_unique<int[]>(nPoints, stream)}, clusterIndex{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},
view_d{cms::cuda::make_device_unique<PointsCloudCUDAView>(stream)} { isSeed{cms::alpakatools::make_device_buffer<int[]>(stream, nPoints)},

auto view_h = cms::cuda::make_host_unique<PointsCloudCUDAView>(stream); view_d{cms::alpakatools::make_device_buffer<PointsCloudAlpakaView>(stream)} {

view_h->x = x.get(); auto view_h = cms::alpakatools::make_host_buffer<PointsCloudAlpakaView>(stream);

view_h->y = y.get(); view_t=>x = x.datal);

view_h->layer = layer.get(); view_h->y = y.data();

view_h->weight = weight.get(); view_h->layer = layer.data();

view_h->rho = rho.get(); view_h->weight = weight.data();

view_h->delta = delta.get(); view_h->rho = rho.data();

view_h->nearestHigher = nearestHigher.get(); view h->delta = delta.data():
— - o I

view_h—>clusterIndex = clusterIndex.get(); view_h->nearestHigher = nearestHigher.data();

view_h->isSeed = isSeed.get(); view_h->clusterIndex = clusterIndex.data();
view_h->isSeed = isSeed.data();
cudaMemcpyAsync(view_d.get(), view_h.get(), sizeof(PointsCloudCUDAView), cudaMemcpyHostToDevice, stream);

alpaka::memcpy(stream, view_d, view_h);

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 11

= ; "::;*openlab
Porting CLUE from CUDA to Alpaka - 3

void KernelComputeHistogram(std::array<LayerTilesSerial, NLAYERS> &d_hist, PointsCloudSerial &points) {

for (unsigned int i = @; i < points.n; i++) {
push index of points into tile CPU serial: loops over all the
d_hist[points.layer[i]].fill(points.x[i], points.y[il], 1i); pOintS

__global__ void kernel_compute_histogram(LayerTilesCUDA* d_hist, pointsViewx d_points, int numberOfPoints) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < numberOfPoints) { GPU CUDA.: eaCh thread
P f 1nde x points into . . .
d_hist[d_points->layer[i]].fill(d_points->x[i], d_points->y[i], i); execute the same instruction

} with a different point
.

struct KernelComputeHistogram {

template <typename TAcc> .
ALPAKA_FN_ACC |void |operator()(const TAcc &acc, CPU/GPU alpaka Same as CUDA’
LayerTilesAlpaka<AcclD> *d_hist, W|th a user'deﬂned helper funCtIOI’l
pOLERy e e Do that accounts for an additional
uint32_t const &numberOfPoints) const - ”r .
push index of points into tiles elements” abstraction layer
cms: :alpakatools::for_each_element_in_grid(n Work leISIOI’] Organized in
acc, numberOfPoints, [&](uint32_t i) { d_hist[d_points->layer[i]].fill(d_points->x[i], d_points->y[i], 1); }); .
Grids-Blocks-Threads-Elements

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 12

=1 CERN
1, openlab

[
CLUE - Performance plot

CLUE 2D performance - 10000 events

499 Tdevfu_c2b03-44-01 @ CMs-HLT > Alpaka with the serial backend scales
AMD EPYC 7763 64-Core
350 | Teo T linearly with the number of threads
............ L ACEEERREEY '
yoo T (concurrent events), the same way as the
300 - S e L R Ty F P - R R
s SRR native serial implementation
52509 7/ > Alpaka with the cuda backend has the
- |
2 500 same scaling of the native cuda
S --§- serial 2D _ _ _
3 k- alpaka-serial_2D implementation. Two points are under
£ 150 1 --§- cuda_2D]])
--¥- alpaka-cuda 2D lnvestlgatlon:
100 - = QOther applications do not show that
T S alpaka is faster than cuda
504 ﬂ‘.:'.‘.'-'-'-'-f‘ ::::: .
PSRTEL S = [tseems that /O operations and the
----- “‘“ .
ol e computing capability of the GPU are
2 4 6 8 10 12 14 16 o)
Threads limiting the scaling for threads > 4

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

Tony Di Pilato

CLUE 3D (WIP)

3D version of the CLUE algorithm to reconstruct
particle showers in multi-layer high granularity
calorimeters

Builds 3D objects starting from clusters built with
CLUE 2D

Serial implementation currently used by the HGCAL ot Qe
reconstruction framework (TICL) in CMSSW 1\\;:9‘&"{2{
Ported to alpaka and can run on GPU now! ¥ ::'\é‘\; A
For more information, check Wahid Redjeb’s poster m\l\ SR

“The TICL reconstruction at the CMS Phase-2 AR

\

High Granularity Calorimeter Endcap” on Thursday

Performance study of the CLUE algorithm with the alpaka library 14

Tony Di Pilato

Throughput (ev/s)

CLUE 3D performance - 10000 events

CLUE 3D - Performance plot

250
devfu-c2b03-44-01 @ CMS-HLT
AMD EPYC 7763 64-Core
NVIDIA Tesla T4
........... A LCPPTTIN T s O AT
200 4 e v ¥ v v v
v
150 A
--¢- serial 3D
-4+ alpaka-serial 3D
--¥- alpaka-cuda_3D
100 A
_____ °
..... oA
1T 2‘
50 et o
Lot r
UL S
.‘:'.‘-""’:"“
o'
0 T T T T T T T T
2 4 6 8 10 12 14 16
Threads

=1 CERN
1, openlab

» Alpaka with the serial backend scales
linearly with the number of threads
(concurrent events) the same way as the
native serial implementation

» Alpaka with the cuda backend provides a a
high throughput of ~200 events/second

= Compared with serial and the same number
of threads (i.e. 2), throughput is more than
20 times higher

= Also for CLUE 3D, throughput on GPU seems
limited by 1/0 operations

Performance study of the CLUE algorithm with the alpaka library

=1 CERN CASVUS
.,- = openlab 2 crmone

Work in progress and future Fplans

% CLUE has been ported to another performance portability library:

SYCL/oneAPI (credits to Luca Ferragina and Juan Jose Olivera Loyola)

= Performance under study

= CLUE 3D expected to be ported as well

= For more information, check Aurora Perego’s poster "Experience in
SYCL/oneAPI for event reconstruction at the CMS experiment” on Tuesday

% A python library named CLUEstering (credits to Simone Balducci and

Alessandro Mancini) has been developed
= Generalization of CLUE to N dimensions
= Python binding to C++ serial implementation
= Expected binding to C++ alpaka implementation in future

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

=1 CERN CASVUS
1, openlab) o

Conclusions

% The alpaka performance portability library is an interesting solution in the
era of heterogeneous computing
= Write the code once, compile it, and run it on different backends!
= Performance close to native implementations
= New backends are planned and/or in development (i.e. SYCL)
% CLUE represents a useful testbed for performance portability solutions
= Simple application
= Tests have been made with both alpaka and SYCL/oneAPI
% CLUE 3D is the first algorithm, within the HGCAL-TICL reconstruction
framework, that has been ported directly from serial C++ to alpaka
= Optimizations still ongoing

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library 17

="1. CERN
1= openlab

CLUE repository: heterogeneous-clue
CLUE original paper: CLUE

email: cms-patatrack@cern.ch

https://github.com/cms-patatrack/heterogeneous-clue
https://doi.org/10.3389/fdata.2020.591315
mailto:cms-patatrack@cern.ch

=), CERN

K CASVUS
1= openlab

CENTER FOR ADVANCED
SYSTEMS UNDERSTANDING

|

=1 CERN CASVUS
.,- = openlab 2 crmone

Porting to Alpaka: what to know

Programming strategy inspired by CUDA
= Easy porting CUDA-to-alpaka
= Same way of organizing the work division — Grids-Blocks-Threads + additional
abstraction layer Elements that can be exploited for vectorization
Performance is close to the native backend
= No overhead with respect to native CUDA or HIP/ROCm

Alpaka objects behave like shared_ptrs - must be passed by value or
const reference

native buffers (vectors, arrays, ...) must be ported to alpaka buffers,
which don’t have a default constructor

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

=¥, CERN ('“’ CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

p,CAT 202 >

&
Kernel launch comparison

kernel_compute_histogram<<<gridSize, blockSize, @, stream_>>>(d_hist.get(), d_points.view(), host_pc.x.size()); CUDA baseline

auto WorkDivlD = cms::alpakatools::make_workdiv<AcclD>(gridSize, blockSize); alpaka- ker—nels are
| |
alpaka: :enqueue(

queue_, enqueued in task

alpaka::createTaskKernel<AcclD>(WorkDivlD, KernelComputeHistogram(), hist_, d_points.view(), d_points.n)); ObJeCtS

Tony Di Pilato Performance study of the CLUE algorithm with the alpaka library

