
Data Transfer To Remote GPUs Over High Performance Networks
MPI CUDA METHOD DATA TRANSFER
Andrea Bocci1 - Ali Marafi2 - Prof.Mohammad Almulla2
(1) Cern, (2) Kuwait University 

The main purpose of this experiment is to 
find the most efficient method of 
transferring data over a network 
connection from a client machine to a 
remote GPU in a server machine, 
performing a computation on the remote 
GPU, and transferring the results back to 
the client.

To evaluate the impact of using a remote 
GPU, we need a reference that is not 
affected by any network overhead.
Therefore, we use a reference the 
performance of a machine that does the 
same computation on a local GPU.

Naively, the local GPU should be the faster 
compared to any method that uses a 
remote GPU.

Experiment Goal

The measurements were performed on two pair of machines.

The first pair is equipped with dual Intel Xeon Gold 6130[1] "Skylake" CPUs (with PCIe 3.0), Mellanox 

ConnectX-5 100Gb/s network cards[2] that can operate in InfiniBand and RDMA over Converged 

Ethernet (RoCE) mode, and Intel 10Gb/s Ethernet network cards; one of the two machines is equipped 

with an NVIDIA Tesla T4 GPU[3]; the machines are connected to each other via both Intel and Mellanox 

cards.

The second pair is equipped with single AMD EPYC 7502P[4] "Rome" CPUs (with PCIe 4.0), Mellanox 

ConnectX-5 Ex 100Gb/s network cards that can operate in InfiniBand and RoCE mode, and Broadcom 

NetXtreme 1Gb/s Ethernet network cards; one of the two machines is equipped with an NVIDIA A10 

GPU[5]; the machines are connected to each other via both Broadcom and Mellanox cards.

The Broadcom and Intel cards support only the IP protocol. The Mellanox cards have been tested using 

the InfiniBand, RoCE, and IP-over-InfiniBand protocols.

Experiment Environment: Hardware Part

 Experiment FlowChart

The time measurements are taken in four points:

Time Input Preparations: copy data from Pageable Buffer to Pinned 
Buffer, then copy from Pinned Buffer to GPU Buffer.

Time Operations on CPU PointView: Computations done on the 
GPU but time taken by CPU.

Time Operations on Device PointView: Computations done on the 
GPU and taken by GPU.

Time Output Preparations: Copy the results from GPU Buffer to 
Pinned Buffer, then Copy from Pinned to Pageable Buffer.

The calculation of Latency time taken for the Local transfer data is: 
[(Time input perpartions + Time Operations on Device + Time output 
preparations) - Time Operations on Server].

 Local Experiment Remote Experiment For Part 1 & 2

For Part 1, the time measurements are taken in seven points:
Time Input Preparations on Client: Copy data from the Client Pageable 
Buffers to the Server Pageable Buffers through MPI with different 
Methods: RoCE with No RDMA, TCP over Ethernet, TCP over Infiniband.

Time Input Preparations on Server: Copy data from the Server Pageable 
Buffers to the GPU Buffers.

Time Operations on Client PointView: Computations done on the GPU but 
time is taken by the Client CPU.

Time Operations on Server PointView: Computations done on the GPU but 
time is taken by the Server CPU.

Time Operations on Device PointView: Computations done on the GPU and 
the time is taken by the GPU.

Time Output Preparations on Server: Copy data from the GPU buffer to the 
Server Pageable Buffer.

Time Output Preparations on Client: Copy data from the Server Pageable 
buffer to the Client Pageable Buffer through MPI with different Methods: 
RoCE with No RDMA, TCP over Ethernet, TCP over Infiniband.

For Part 2, the time measurements are taken in seven points:
Time Input Preparations on Client: Copy data from the Client Pageable 
Buffers to the Server Pinned Buffers through MPI with different 
Methods: RoCE with No RDMA, TCP over Ethernet, TCP over Infiniband.

Time Input Preparations on Server: Copy data from the Server Pinned 
Buffers to the GPU Buffers.

Time Operations on Client PointView: Computations done on the GPU 
but time is taken by the Client CPU.

Time Operations on Server PointView: Computations done on the GPU 
but time is taken by Server the CPU.

Time Operations on Device PointView: Computations done on the GPU 
and the time is taken by the GPU.

Time Output Preparations on Server: Copy data from the GPU buffer to 
the Server Pinned Buffer.

Time Output Preparations on Client: Copy data from the Server Pinned 
buffer to the Client Pageable Buffer through MPI with different 
Methods: RoCE with No RDMA, TCP over Ethernet, TCP over Infiniband.

For Part 3, the time measurements are taken in seven points:
Time Input Preparations on Client: Send data from a Client Pageable 
Buffers to a remote GPU through MPI with different Methods: RDMA, 
RoCE with RDMA, TCP over Ethernet, TCP over Infiniband.

Time Input Preparations on Server: Receive data from Client Pageable 
Buffers to the GPU Buffers.

Time Operations on Client PointView: Computations done on the GPU 
but time is taken by Client CPU.

Time Operations on Server PointView: Computations done on the GPU 
but time is taken by the Server CPU.

Time Operations on Device PointView: Computations done on the GPU 
and the time is taken by the GPU.

Time Output Preparations on Server: send data from the GPU buffer to 
the Client Pageable Buffers.

Time Output Preparations on Client: Receive data from the GPU buffer 
to the Client Pageable Buffer through MPI with different Methods: 
RDMA, RoCE with RDMA, TCP over Ethernet, TCP over Infiniband.

Tesla A10 GPU Results: Local, Remote over InfiniBand (with RDMA), and RoCE (with RDMA)Tesla A4 GPU Results: Local, Remote over InfiniBand (with RDMA), and RoCE (with RDMA)

Reference

[1]. https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.
html

[2]. https://support.mellanox.com/s/productdetails/a2v5000000052eDAAQ/connectx5-card
[3]. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
[4]. https://www.amd.com/en/product/8796
[5]. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/A10-Product-Brief.pdf
[6]. https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
[7]. https://www.open-mpi.org/
[8]. https://openucx.readthedocs.io/en/master/

Tesla A4 GPU Results: Local, Part 1, and Part 2 (without RDMA) Tesla A10 GPU Results: Local, Part 1, and Part 2 (without RDMA)

To perform the measurements using both local and remote GPUs we wrote two applications: a first one for programming a local GPU, cudaTimeMeasurment, 

and a second for programming a remote GPU, mpiCudaGeneric.

Both programs generate two arrays of single precision floating point numbers with a size variable between 10 and 400 million elements, then transfer them to 

the GPU to perform a computation, and copy the resulting array back to the host memory. The GPU simply computes the pairwise sum of the two arrays; to 

emulate the impact of a more complex computation, the sum can be repeated an arbitrary number of times.

Finally, the result is compared with the result of the same operation performed on the CPU; if the results are correct, the program prints the amount of time 

spent in the various parts of the task: data transfers and GPU computations.

Both programs use CUDA 11.5[6] to program the GPUs.

mpiCudaGeneric uses OpenMPI 4.1[7] and optionally the Unified Communication X (UCX)[8] library for the inter-process communications.

When using the Mellanox cards in InfiniBand or RoCE mode with the UCX library, the communication with the remote GPU can take advantage of the NVIDIA 

GPUDirect Remote Direct Memory Access (RDMA) to transfer the data directly to or from the remote GPU memory, bypassing the machine's host memory.

Experiment Environment: Software Part 

RDMA: Remote Direct Memory Access is a direct memory access from one machine to the system or GPU memory 
of another machine without involving either one's operating system, achieving high-throughput, low-latency data 
transfers. Of the cards tested in this work, only the Mellanox cards support RDMA.

RoCE: RDMA Over Converged Ethernet allows remote direct memory access over an Ethernet network, by 
encapsulating the InfiniBand transport packets over Ethernet. In this work we used RoCE v2, an IP-based protocol 
that supports routing. Of the cards tested in this work, only the Mellanox cards support RoCE.

TCP Over Infiniband: TCP/IP protocol over an InfiniBand connection, encapsulating the IP packets inside 
InfiniBand packets.

TCP Over Ethernet: TCP/IP protocol over an Ethernet connection, encapsulating the IP packets inside Ethernet 
packets

Abbreviations

Conclusion

As expected, the InfiniBand cards are significantly faster than the Ethernet cards as we tested.

On the Mellanox cards:

● We did not observe a significant difference in performance between the InfiniBand and RoCE protocols;
● Even without using the RDMA capability, the native InfiniBand protocols is 2-3 times faster than the 

IP-over-InfiniBand protocol;
● When paired with a communication library that can leverage the RDMA capabilities, the data transfer to 

remote GPUs is as fast (or even faster) than using a local GPU.

This is a very encouraging result for extending the use of GPUs beyond those available on a local machine.

Comparing the results from the "Part 1" and "Part 2" measurements we can see that - when RDMA is not available - the use 
of an intermediate buffer in pinned host memory plays a vital role in speeding up the data transfers with a remote GPU.

Remote Experiment For Part 3

https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
https://support.mellanox.com/s/productdetails/a2v5000000052eDAAQ/connectx5-card
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.amd.com/en/product/8796
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/A10-Product-Brief.pdf
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://www.open-mpi.org/

