Practical Quantum Computing with Trapped Ions

Jungsang Kim,

Department of Electrical and Computer Engineering and Department of Physics

Duke University, Durham, NC, USA

IonQ, Inc. College Park, MD, USA

Computation in Sciences

- What was science like before computers were available?
- Computation has made a huge impact in ALL scientific disciplines
 - Computational Physics, Computational Chemistry, Systems Biology
 - Numerical simulation and CAD in vast areas of science and engineering
 - Expanding to machine learning and AI, impacting in all areas of society
- Development of new computational methods vs advanced hardware
 - Progress in HW is critical in the early days to get ideas flowing
 - Methods development accelerates the impact faster than new HW

New science is enabled by computational technology!!

What is a Quantum Computer?

"A quantum computer differs more from a classical computer......

...than a classical computer differs from an ABACUS"

William Phillips 1997 Nobel Laureate

Critical Quantum Feature I: Superposition

A classical bit: 0 or 1

qubit: $|\psi\rangle = a|0\rangle + b|1\rangle$

Critical Quantum Feature II: Entanglement

qubits: $|\psi\rangle = a|00\rangle + b|11\rangle$

"spooky action-at-a-distance"

(A. Einstein)

entanglement: "wiring without wires"

GOOD NEWS...

parallel processing on 2^N inputs

...BAD NEWS...

measurement gives random result

...GOOD NEWS! quantum interference

e.g., N=3 qubits

 $a_0 |000\rangle + a_1 |001\rangle + a_2 |010\rangle + a_3 |011\rangle$ $a_4 |100\rangle + a_5 |101\rangle + a_6 |110\rangle + a_7 |111\rangle$

depends on *all* inputs

N=300 qubits have more configurations than there are particles in the universe!

David Deutsch (early 1990s)

Application: Factoring Numbers

A quantum computer can factor numbers **exponentially faster** than classical computers

```
39 = 3 \times 13 (...easy) 38647884621009387621432325631 = ? \times ?
```


Key generation

n = P * Q d * e = 1mod Φ(n)

Encryption

c = me mod n Public Key(n,e)

Decryption

m = c^d mod n private key (d)

Physics of Trapped Ion Quantum Computing

Search for The "Perfect Qubit"?

• What is a good criteria for defining a "Perfect Qubit"?

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i(\omega t + \varphi)}\sin\frac{\theta}{2}|1\rangle\right)$$

$$T_1 = \infty$$

 $T_2 = \infty$

Zero Decay Errors

Zero Dephasing Errors

For hyperfine ground state of H, the spontaneous transition rate is estimated to be

2.9x10⁻¹⁵ per second, or 1 per 11 million years

For hyperfine ground state of Cs

Cs v_{HF} = 9 192 631 770 Hz (EXACT!!)

- $T_2 \approx 1$ sec baseline (Olmschenk et al., PRA 76, 052314, 2007)
 - $T_2 \approx 5500 \text{ sec (P. Wang et al., Nature Comm. 12, 233, 2021)}$

Hyperfine Ground State of an Atom is an ideal choice

Trapped Ion Hyperfine Qubit: 171Yb+

- Qubit initialization by optical pumping:
- Very high fidelity (error ~10-6) limited by off-resonant scattering
- Qubit Measurement by **resonance fluorescence**:
- High fidelity (~10⁻³-10⁻⁴) limited by off-resonant scattering, dark counts
- Single-qubit gates by off-resonant Raman transitions:
- Very high fidelity ($\sim 10^{-4}$ - 10^{-5}) limited by spontaneous emission, laser noise
- Two-qubit gates by state-dependent force from Raman transitions:
- High fidelity ($\sim 10^{-3}$ - 10^{-5}) limited by spontaneous emission, laser noise

Based on Individual Atoms, with Fully Flexible Control

IONQ Autoloading Register

Quantum Computing zone

Quantum Computer Module

Plenty of Room for New Physics

- Errors are dominated by systematic and control errors
- Innovation in coherent control and error mitigation techniques
- Robust hardware designs can reduce or eliminate most of these errors
- Error cancellation at the circuit level
- Multi-qubit entangling gates

All In Software!!

- Nifty crosstalk cancellation techniques
- Gate performance maintained at dozens of qubits

Quantum Computer for Users

Useful Near-Term Quantum Algorithms

Quantum Machine Learning (QML): Quantum advantages proven for

Learning complex patterns w/ quantum feature maps (arXiv:2010.02174)

Exponential gain in predicting certain worst-case error (arXiv:2101.02464)

Quantum correlations used in generative modeling (arXiv:2101.08354)

Quantum Chemistry and Materials Studies

Variational quantum eigensolvers (VQE) for energy estimation

Quantum simulation of dynamics of excitation

Study of quantum many-body phenomena

Optimization Problems: Quantum Approximate Optimization Algorithm

QML Example: Nearest Centroid Classifier

Data Set

Fit your model: Find centroids of each class of training data

Predict labels of new data:
Compute distance to centroids
QUANTUMLY to assign labels
of the nearest centroid

Classification Model

QML NCC: MNIST Database on 8 Qubits

Other Examples a set on 8 qubits

Generating high-resolution handwritten digits

M. S. Rudolph et al., arXiv:2012.03924 (2020)

Binary Paint Shop problem with QAOA

 $IS = 9.43 \pm 0.02$

 $IS = 9.54 \pm 0.02$

M. Streif et al., arXiv:2011.03403 (2020)

Joint Probability Distribution: Copula

- Ion trap quantum computers are used to explore Multi-variate machine learning techniques using copulas
- More efficient traning and Accurate models that capture outliers

Quantum Chemistry Example: VQE

Order of	Naïve		Optimized		Energy
Approx.	qubits	gates	qubits	gates	(Hartrees)
Baseline					-74.9624
+1 term	4	40	2	2	-74.9749
+2 terms	4	80	2	2	-74.9781
+3 terms	8	112	4	6	-74.9804
+4 terms	8	144	4	8	-74.9828
+5 terms	10	232	5	10	-74.9858
+8 terms	10	264	10	60	-74.9944
+10 terms	10	348	10	84	-74.9990
+11 terms	10	532	10	92	-75.0020
+13 terms	10	596	10	116	-75.0074
+15 terms	10	648	10	136	-75.0087
+19 terms	12	730	11	157	-75.0104
+21 terms	12	800	11	178	-75.0104
EXACT:	A	7.444			-75.0116

Quantum Chemistry Example: VQE

Order of	Naïve		Optimized		Binding Energy
Approx.	qubits	gates	qubits	gates	(Hartrees)
Baseline					-74.9624
+1 term	4	40	2	2	-74.9749
+2 terms	4	80	2	2	-74.9781
+3 terms	8	112	4	6	-74.9804
+4 terms	8	144	4	8	-74.9828
+5 terms	10	232	5	10	-74.9858
+8 terms	10	264	10	60	-74.9944
+10 terms	10	348	10	84	-74.9990
+11 terms	10	532	10	92	-75.0020
+13 terms	10	596	10	116	-75.0074
+15 terms	10	648	10	136	-75.0087
+19 terms	12	730	11	157	-75.0104
+21 terms	12	800	11	178	-75.0104
EXACT:					-75.0116

Summary and Conclusion

- Quantum computers provide fundamentally new way of computation
 - Started out in Physics, transitioning into technology, FAST
 - New types of algorithms enable new types of applications
- Availability of fully-connected programmable quantum computers
 - Provides a testing ground for novel quantum algorithms
 - Continued performance scaling is key to enabling new approaches to challenging problems
- Progress in QML, quantum chemistry and QAOA algorithms
 - Optimization for hardware provide performance improvements
- Opportunities to explore and enable new approaches computational sciences

Team and Collaboration

Duke Team

Peter Maunz Taehyun Kim So-Young Baek

Kai Hudek

Caleb Knoernschild

Kyle McKay

Andre van Rynbach

Emily Mount

Daniel Gaultney

Muhammed Ahsan

Rachel Noek

Stephen Crain

Geert Vrijsen

Volkan Inlek

Ye Wang

Junki Kim

Yuhi Aikyo

Clinton Cahall

Chao Fang

Robert "Tripp" Spivey

George Schwartz

Ke Sun

Jacob Whitlow

Ely Novakoski

• **Ken Brown** Group (Duke)

Rick Shu

True Merrill

Yu Tomita

Michael Newman

Jyothi Saraladevi

Lu

Mark Kuzyk

Leo

Natalie Brown

Dripto Debroy

Gloria Jia

James Leung

Muyuan Li

Bichen Zhang

Shilin Huang

Omid Khosravani

Evan Reed

Eric

Brad Bondurant

Swanadeep Majumder

Phoebe Chen Samuel Phiri

Leon

University of Maryland
Chris Monroe

Jonathan Mizrahi

Jason Amini

Norbert Linke

Ken Wright

Shantanu Debnath

Kale Johnson

David Wong-Campos

David Hucul

Volkan Inlek

Aaron Lee

Kristi Beck

Marko Cetina

Michael Goldman

Kevin Landsman

Andrew

Laird Egan

Daiwei Zhu

Harris Corporation
 Michael Lange

Randy Morse Lee Burberry Chris Corey AOSense

Martin Boyd

Scott Sullivan
Jamil Abo-Shaeer

Sandia National Labs

Peter Maunz

Christian Arrington

Drew Hollowell

• ColdQuanta, Inc.

Megan Ivory

Alex Kato Evan Selim

NIST

David Pappas Sae Woo Nam

Varun Verma

Kyle McKay

Dustin Hite

JPL

Matthew Shaw

Francesco Marsili

