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Computation In Sciences

« \What was science like before computers were available?

« Computation has made a huge impact in ALL scientific disciplines
— Computational Physics, Computational Chemistry, Systems Biology
— Numerical simulation and CAD In vast areas of science and engineering
— Expanding to machine learning and Al, impacting in all areas of society

* Development of new computational methods vs advanced hardware
— Progress in HW is critical in the early days to get ideas flowing
— Methods development accelerates the impact faster than new HW

New science Is enabled by computational technology!!
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What is a Quantum Computer?

William Phillips
1997 Nobel Laureate
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Critical Quantum Feature |: Superposition

; A classical bit: 0 or 1

0)
% qubit: [Y) = a|0) + b|1)
1)

0)

1)
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Critical Quantum Feature Il: Entanglement

% @% qubits: |Y) = a|00) + b|11)

“spooky action-at-a-distance”
- (A. Einstein)
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entanglement: “wiring without wires” ‘ O)
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GOOD NEWS... ...BAD NEWS... ...GOOD NEWS!

parallel processing measurement gives guantum interference
on 2V inputs random result

e.g., N=3 qubits

s -
O e o ©
Q 4 .9.... e O

O v e o @ —

O ® —— ——— O

o S ettt et O

o © o0 o o e O

O ® O

O
000) + a,]001) + a, [010) + a, [011 depends on
a +a +a +a '
1200) + 2101 + o210} + - 1 all inputs

a, |100) + ag|101) + a, [110) + a, [111)

N=300 qubits have more configurations
than there are particles in the universe!

David Deutsch
(early 1990s)
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Application: Factoring Numbers

A quantum computer can factor numbers
exponentially faster than classical computers

39 =3x 13 (...easy)
38647884621009387621432325631 =2 x ?

Key n=P*Q
generation d *e=1mod ®(n)
; ¢ =me mod n
Encryption Public Key(n,e)
. m =cd mod n
Decryption private key (d)
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Physics of Trapped lon Quantum Computing
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Search for The “Perfect Qubit”?
* What is a good criteria for defining a “Perfect Qubit™?

. 6 | ?,
lp) = e COSE |0) + el(Wt+9) sinz 1)

— OO — OO
I I
1) =@ Zero Decay Errors Zero Dephasing Errors
AE = ho For hyperfine ground state of H, For hyperfine ground state of Cs
_tg‘ee ;F’;‘:;‘;et‘;“setrans't'on rate Cs vye = 9 192 631 770 Hz (EXACT!)
| |
-15
0 -@— 2.9x10°> per second, or + T,~ lsec baseline (Olmschenk et al., PRA 76, 052314, 2007)
1 per 11 million years . T,~ 5500 sec (P. Wang et al., Nature Comm. 12, 233, 2021)

Hyperfine Ground State of an Atom is an ideal choice
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Trapped lon Hyperfine Qubit: ’1Yb*

Qubit initialization by optical pumping:

~ Very high fidelity (error ~10°) limited by off-resonant scattering

Qubit Measurement by resonance fluorescence:

High fidelity (~10-3-10-4) limited by off-resonant scattering, dark counts
Single-qubit gates by off-resonant Raman transitions:

Very high fidelity (~10-4-10-°) limited by spontaneous emission, laser noise
Two-qubit gates by state-dependent force from Raman transitions:

High fidelity (~10-3-10-°) limited by spontaneous emission, laser noise

Duke
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o IONQ Qubit Technology

80 individual
171¥h* atoms

Sandia
National
Laboratories

Qona



o IONQ Autoloading Register

N=23 qubits preprogrammed

Quantum
Computing
zone
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Qona

Quantum Computer
Module




Plenty of Room for New Physics

o Errors are dominated by systematic and control errors
Innovation in coherent control and error mitigation techniques
Robust hardware designs can reduce or eliminate most of these errors
« Error cancellation at the circuit level
« Multi-qubit entangling gates All In Software!!
» Nifty crosstalk cancellation techniques

» Gate performance maintained at dozens of qubits
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Quantum Computer for Users

) IONQ
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Useful Near-Term Quantum Algorithms

e Quantum Machine Learning (QML): Quantum advantages proven for

Learning complex patterns w/ quzintum feature maps (arXiv:2010.02174)

Exponential gain in predicting certain worst-case error (arXiv:2101.02464)
Quantum correlations used in generative modeling (arXiv:2101.08354)
e Quantum Chemistry and Materials Studies
Variational quantum eigensolvers (VQE) for energy estimation
Quantum simulation of dynamics of excitation
Study of quantum many-body phenomena

o Optimization Problems: Quantum Approximate Optimization Algorithm

0 [o]\'[e] July 2022



Example: Nearest Centroid Classifier

Data Set Classification Model

IS deaet Fit your model: o
" et A Find centroids of Classification
each class of training data with Nearest Centroid Classifier (NCC)

Investing Picks ‘

EE——)

Predict labels of new data: :
Compute distance to centroids T S
QUANTUMLY to assign labels " s Mergers & Acquisitions
of the nearest centroid L

Iris Virginica

/

s3: Economy & Government

MNEERNNANES
ARNNEANOEES
NENLRENCEES
NOSEEINENEE
ARNARANAOAEN
HNSRNEEANS
OSSR REARNNE
SNNGEANANSN
AESESNEENNY
BAOSNANANEE
sloSisaefope] -0
HEANNRENNEEN
slelelylelwvl~Is
ANSNSESEES
HERANDANSENE
olsNisfal2japol-J0
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NCC: MNIST Database on 8 Qubits

60

‘ Accuracy of classical 200 samples

Nearest Centroid
012]3/1/15116/2]|&8)9

N
o

80 samples
40 samples 40 samples 0 | | | g | 3 |

O I <159

Classification Error %
N
o

Nq=8 Nq=8 Nq=8
NC=2 NC=4 NC=10
NS=1 000 NS=1000 NS=1 000
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Other Examples

e Generating high-resolution handwritten digits

ZARPATA

NECEVVENE NN AV
wissaepd
W XPOW

NPLOLWPIN —~

M. S. Rudolph et al.,
arXiv:2012.03924 (2020)

> SRRV RO RN

IS = 9‘43 + 0.02 IS = 9.54 £+ 0.02

e Binary Paint Shop problem with QAOA

M. Streif et al.,
arXiv:2011.03403 (2020)

2 3 4 5 6 7 8 9 10
Number of cars
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Copula

lon trap quantum computers are used to explore Multi-variate machine learning
techniques using copulas
More efficient traning and Accurate models that capture outliers

Target Distribution Classical GAN Quantum GAN Quantum CBM

=0.05

1
-0.10 -005 000 005 010
AAPL

010

From training data After 20,000 Iterations After 1,000 Iterations After 26 Iterations

Q) 1oNG Cre T July E. Zhu et al., https://arxiviorg/abs/2109.06315
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Example: VQE

Order of Naive Optimized Energy
Approx. qubits gates qubits gates (Hartrees)
Baseline -74.9624
+1 term -74.9749
+2 terms -74.9781
+3 terms -74.9804
+4 terms -74.9828
+5 terms -74.9858
+8 terms -74.9944
+10 terms -74.9990
+11 terms -75.0020
+13 terms -75.0074
+15 terms -75.0087
+19 terms -75.0104
+21 terms -75.0104

Y. Nam et al., npj Quant. Inf. 6, 1 (2020) 21




Example: VQE

In-silico VQE (Bosonic) Order of Naive Optimized Energy

—74.975-1 % In-silico VQE (MO Selection) Approx.  qubits gates  qubits gates (Hartrees)
In-silico VQE (Full) Baseline -74.9624
—74.980 - Experiment +1 term -74.9749
+2 terms -74.9781
—74.985 - +3 terms -74.9804
+4 terms -74.9828
+5 terms -74.9858
+8 terms -74.9944
+10 terms -74.9990
+11 terms -75.0020
+13 terms -75.0074
+15 terms -75.0087
+19 terms -75.0104

—74.990 -

—74.995 -

—75.000 1

—75.005 - +21 terms -75.0104

# Determinants

Y. Nam et al., npj Quant. Inf. 6, 1 (2020) 22




Summary and Conclusion

e Quantum computers provide fundamentally new way of computation
- Started out in Physics, transitioning into technology, FAST
- New types of algorithms enable new types of applications
o Availability of fully-connected programmable quantum computers
- Provides a testing ground for novel quantum algorithms
- Continued performance scaling is key to enabling new approaches
to challenging problems
o Progressin QML, guantum chemistry and QAOA algorithms
- Optimization for hardware provide performance improvements

o Opportunities to explore and enable new approaches computational sciences
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