
Adapting C++ for Data Science

Vassil Vassilev, Princeton University
compiler-research.org

The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any opinions, 

findings, conclusions or recommendations expressed in this material are those of the authors and do not 

necessarily reflect the views of the National Science Foundation.



2

What do we do with existing code written in C++? 

HEP has ~O(20M) LoC written in C++

rm --rf ‘em all? Keep expanding them randomly?

How often do you use Python relative to C/C++?

Half-and-half

More Python
Always Python

More C++

Always C++

Neither

PyHEP 2020, J. Pivarski

https://raw.githubusercontent.com/jpivarski-talks/2022-09-08-chess-scientific-python-ecosystem/main/PLOTS/pyhep2020-survey-5.pdf


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Data

Science

A
rt

if
ic

ia
l 
In

te
lli

g
e
n

c
e

Scope

3

Machine 

Learning

Deep 

Learning



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Tools

4

“Human brain has not evolved structurally a lot since 17th century however the 

development of mankind has, because we learned how to build better tools.” 

(Image credit: Creative Commons | The Opte Project)

The Internet

(Image credit: Terren | Creative Commons)

The Lightbulb

(Image credit: Britannica Fine Art Images/Heritage Image/age fotostock)

The Printing Press



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Language Design Principles

C++

• Efficiency

• Stability

• Backward compatibility

5

“Special cases aren't special enough to

break the rules” Zen of Python Link

Python

• Readability

• Simplicity

• Flexibility

“Prioritizes Performance over Surprise which

is sometimes surprising“ T. Winters Link

https://peps.python.org/pep-0020/
https://youtu.be/LJh5QCV4wDg


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Talking to a Dataset

Understanding the Language of a Dataset – a multistep, iterative, interactive, exploratory 
process:

• Interactivity = [human] productivity + just enough performance

6

“Interactive Supercomputing for Data Science“ W. Reus Link

https://youtu.be/hzLbJF-fvjQ


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Just Enough Performance

7

Approaches:
• JIT compile using Numba – (1) & (3)
• Compile with Pypy – (1) & (2)
• Use a language such as Julia – (2) & (3)
• This talk offers a way to cover (1), (2) and (3)

def f(N = 100, M = 1000, L = 10000):

for i in range(N):

for j in range(M):

for k in range(L):

g(i, j, k)

Three desirata:

1. A language people already know

2. Covers the whole language, not a subset

3. Delivers bare-metal speed, not just a factor-of-several above X

“The inner loop principle“ J. Pivarski, private exchanges



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

What Is Python?

• Just enough performance when relying on 
bare-metal technologies

• NumPy is an enabler for an entire data 
science ecosystem

• NumPy is very good but sometimes far 
from bare metal, accelerators and across 
nodes (means to address the problem such 
as CuPy or Dask).

8

“This is why I love C++ and use Python for most of the work I do...”, a happy user on the internet

BLAS, LAPACK CUDA



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Brief, Incomplete & Inaccurate History of C++

9

1
9

7
0

s

pcc

start executeunderstand code translate 

(compiler)

Deploy

(linker)

1
9
8
3

1
9
8
7

2
0
0
7

ld dyld, unix

printf

sidsym

cfront

glibc

.o

.a, .so

.o

libstdc++

gcc posix, win

clang

gdb
valgrind

gold

linters

basic SA

Systematic

Testing

GNU

LLVM

“One of our main goals for GCC is to prevent any parts of it from being used together with non-

free software. Thus, we have deliberately avoided many things that might possibly have the effect of 

facilitating such usage, even if that consequence wasn't a certainty.” RMS

.llvm_ir
LLVM Just-In-Time Compiler

libc++, lld, lldb, clang-SA, clang-tidy, 

clang-format, llvm-jit, jitlink,

address-, mem-,thread-, dataflow san

bolt, …

.out
.so

.a



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Brief, Incomplete & Inaccurate History of C++

10

start executeunderstand code translate 

(compiler)

Deploy

(linker)

2
0
0
7 clangLLVM

.llvm_ir
LLVM Just-In-Time Compiler

libc++, lld, lldb, clang-SA, clang-tidy, 

clang-format, llvm-jit, jitlink,

address-, mem-,thread-, dataflow san

bolt, …

2
0
1
1 C++11

2
0
1
2 Cling: The First C++11-compliant Interpreter

2
0

2
2 C++14-23

Improvements in performance, 

usability without breaking existing code

Lambdas, automatic type deduction, 

uniform initialization, nullptr, deleted and

defaulted function, rvalue references,

smart pointers, threading, new algorithms

Relaxed constexpr, consteval, variable templates, mutexes,

locking, nested namespaces, structured bindings,

concepts, modules, 

Tools supporting Data Science

C considers evolving faster!



My Pillars of Data Exploration

Recent C++ tool advancement is an enabling factor for:

• Interactive C/C++

• Automatic Language Interoperability

• Advanced bare-metal toolbox

11



Exploratory Programming With 

Interactive C++

12



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Interactive C++. Key Insights

• Incremental Compilation

• Handling errors

• Syntactic

• Semantic

• Execution of statements

• Displaying execution results

• Entity redefinition

13

[cling] #include <vector>

[cling] std::vector<int> v = {1,2,3,4,5};

[cling] std.sort(v.begin(), v.end());

input_line_1:1:1: error: unexpected namespace 

name 'std': expected expression

std.sort(v.begin(), v.end());

^

[cling] std::sort(v.begin(), v.end());

[cling] v // No semicolon

(std::vector<int> &) { 1, 2, 3, 4, 5 }

[cling] std::string v = "Hello World"

(std::string &) "Hello World"



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

C++ in Notebooks

Xwidgets – User-defined controls

14

S. Corlay, Quantstack, Deep dive into the Xeus-based Cling kernel for Jupyter, May 2021, compiler-research.org

https://compiler-research.org/assets/presentations/S_Corlay-CaaS_Xeus-Cling.pdf


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Interactive CUDA C++

15

S. Ehrig, HZDR, Cling’s CUDA Backend: Interactive GPU development with CUDA C++, Mar 2021, compiler-research.org

https://compiler-research.org/assets/presentations/S_Ehrig-CaaS_Cling-CUDA.pdf


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

ast

Interpreting C++. Cling

16

C/C++ Input

Cling TransformationslibClang

LLVM JIT MC (x86, NVPTX, ...)

CPU

GPGPU

text

text

ast

astast

ir



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Compiler (C++) As A Service

17

Static Compiler

Abstract machine Target machine

In-Process Compiler As A Service

P
ro

d
u
c
e
d
 b

in
a
ry

B
in

a
ry

 s
ta

rt
e
d

B
in

a
ry

 e
x
e
c
u
ti
o
n

Abstract user Concrete user(s)

Ahead of Time Just-in-Time
Continuous Optimization

(LLVM’s OrcV2)

defer

develop deploy start execute

optimize

PGO



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

CaaS. Programming Model

18

/// Call an interpreted function using its symbol address.

void callInterpretedFn(cling::Interpreter& interp) {

// Declare a function to the interpreter. Make it extern "C”

// to remove mangling from the game.

interp.declare(”#pragma cling optimize(1)”

extern \"C\" int cube(int x) { return x * x * x; }");

void* addr = interp.getAddressOfGlobal("cube");

using func_t = int(int);

func_t* pFunc = cling::utils::VoidToFunctionPtr<func_t*>(addr);

std::cout << "7 * 7 * 7 = " << pFunc(7) << '\n';

}

// caas-demo.cpp 

// g++ ... caas-demo.cpp; ./caas-demo

int main(int argc, const char* const* argv) {

cling::Interpreter interp(argc, argv, LLVMDIR);

callInterpretedFn(interp);

return 0;

}



Automatic Language 

Interoperability

19



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Automatic Language InterOp. Python

The approach does not require the project maintainer to bother providing static bindings

20

W. Lavrijsen, LBL, cppyy, Sep 2021, compiler-research.org

https://compiler-research.org/assets/presentations/W_Lavrijsen-CaaS_Cppyy.pdf


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Extending Data Scientist’s Toolbox

21

compiler-research.org’s Compiler-As-A-Service Project Final Goal

Crossing the 
language barrier 

is expensive

Our Compiler-
As-A-Service 

Approach solves 
that



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Extending Data Scientist’s Toolbox. Results

22

B. Kundu, Princeton, Efficient and Accurate Automatic Python Bindings with Cppyy & Cling, Tue, ACAT22

100x should be 
within reach

https://indico.cern.ch/event/1106990/contributions/4991292/


Advanced Bare-Metal Toolbox

For Data Science

23



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Domain-Specific Tools For Data Science

Opening up the toolchain allows us to build domain-specific extensions better 
adapted for our field. We also can extract dataset-specific knowledge:

• Reasoning about algorithm precision and numerical stability

• Providing exact and fast gradients using automatic differentiation techniques

• Enabling sensitivity analysis across HEP components using differentiable 
pipelines

24



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

CaaS. Domain-Specific Data Science Tools

25

#include <...>

// Derivatives as a service.

void gimme_pow2dx(cling::Interpreter &interp) {

// Definitions of declarations injected also into cling.

interp.declare("double pow2(double x) { return x*x; }");

interp.declare("#include <clad/Differentiator/Differentiator.h>");

interp.declare("#pragma cling optimize(2)");

interp.declare("auto dfdx = clad::differentiate(pow2, 0);");

cling::Value res; // Will hold the evaluation result.

interp.process("dfdx.getFunctionPtr();", &res);

...

}

Can generate 
computationally efficient 
gradients for codes with 
differentiable properties

int main(int argc, const char* const* argv) {

std::vector<const char*> argvExt(argv, argv+argc);

argvExt.push_back("-fplugin=etc/cling/plugins/lib/clad.so");

cling::Interpreter interp(argvExt.size(), &argvExt[0], LLVMDIR);

gimme_pow2dx(interp);

return 0;

}



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

CaaS. Precision Tuning With Clad

26

G. Singh, Princeton, Floating Point Error Estimation Using AD, SIAM UQ22

Taylor-based Estimation Floating Point Errors for a 
dataset using AD:

AD enables sensitivity analyses we could not do before.

https://compiler-research.org/presentations/#FPErrorEstADSIAMUQ2022


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

CaaS. Exact and Fast Gradients With Clad

27

G. Singh, Princeton, Automatic Differentiation of Binned Likelihoods With Roofit and Clad, Wed, ACAT 22

While speeding up RooFit, after completion of the project we will be able to ask:
How sensitive is an output with respect to a given input parameter?

https://indico.cern.ch/event/1106990/contributions/4998060/


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

𝜃
O(10

)

O(100M)

Hypothesi

s

d
a
ta

 

d
im

e
n

s
io

n
a
li

ty

Detector Data

RGE Flow

Matrix

Elements

PDFs

Parton

Shower

Hadronization

Material

Interaction

Inference

Statistical

Analysis

Observable

Distributions

Jet

Algorithms

Energy

Clusters

"Analysis"“Simulation”

Tracks

𝜃

Sensitivity Analysis At Scale

Adapting our hypothesis to the data is an 
optimization problem

Differential programming is a programming 
paradigm in which software is susceptible to 
automatic differentiation.

L. Heinrich, TUM, Differentiable Programming for High Energy Physics, 
2022, Future Trends in Nuclear Physics Computing

28

https://indico.bnl.gov/event/15089/contributions/68246/attachments/43525/73329/Future_Trends_Nuclear.pdf


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

𝜃
O(10)

O(100M)

Hypothesis

d
a
ta

 

d
im

e
n

s
io

n
a
li

ty

Detector Data

RGE Flow

Matrix

Elements

PDFs

Parton

Shower

Hadronization

Material

Interaction

Inference

Statistical

Analysis

Observable

Distributions

Jet

Algorithms

Energy

Clusters

"Analysis"“Simulation”

Tracks

𝜃

Sensitivity Analysis At Scale

The ”Analysis” steps have started moving forward including ROOT. 
The ”Simulation” steps follow. G4 is the biggest challenge.

Progress in the area will be discussed at Differentiable and Probabilistic Programming for Fundamental 
Physics, in June 2023 in TUM.

N. Simpson, differentiable-analysis-examples,Single-bin toy 
analysis optimized to balance uncertainty

MadJAX
Pyhf, soon 

RooFit

NeosNeos

29

https://www.munich-iapbp.de/probabilistic-programming
https://github.com/phinate/differentiable-analysis-examples


28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Impact of Interactive C++ in Physics

Scientific breakthroughs such as the discovery of the big void in the Khufu’s Pyramid, 
the gravitational waves and the Higgs boson heavily rely on the ROOT software package
which uses interactive C++ and Cling.

[1]

[1] K. Morishima et al, Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons, Nature, 2017

[2] Abbott et al, Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016 

[3] CMS Collab, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 2012

[2]

[3]

30



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Conclusion

• C++ tools can bring us bare metal performance

• Existing tools can be reorganized and/or generalized with minimal efforts to 
enable new opportunities

• We should maintain them and grow them focusing on what they are good for

• Our community has unique multi-language expertise that can allow us doing 
more science with the same budget

31



28-Oct-2022 V.Vassilev – Adapting C++ for Data Science

Thank You!

Selected References

•https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/

•https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/

•https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/

•https://Compiler-Research.org

•https://root.cern

•Interactive C++ for Data science, CppCon21

•Differentiable programming in C++, CppCon21 

32

https://www.linkedin.com/in/vgvassilev/https://github.com/vgvassilev/

https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://compiler-research.org/
https://root.cern/
https://www.youtube.com/watch?v=23E0S3miWB0
https://www.youtube.com/watch?v=1QQj1mAV-eY

