Loop amplitudes at the precision frontier

Simon Badger (University of Turin)

based on work with: Aylett-Bullock, Brønnum-Hansen, Becchetti, Butter, Chaubey, Hartanto, Luchmann, Marcoli, Marzucca, Moodie, Peraro, Pitz, Plehn, Chicherin, Gehrmann, Henn, Zoia

> ACAT, Bari 27th Ocotber 2022

erc

European Research Council Established by the European Commission

motivation: where is the precision frontier?

part I: finite field arithmetic and two-loop amplitudes

amplitude neural networks

from theory to experiment

from theory to experiment: precison frontier → 1%

new technology required!

reduction techniques

strenuous computer alegbra

~|-|0 %

challenging integration

fixed order QCD N³LO 2→2 d**σ** N²LO 2→3 d**σ** mixed QCD/EW

 $\langle |\mathcal{A}|^2$,

IR

"automation"

 $d\sigma^{\rm LO}$ $+ \alpha_s d\sigma^{\rm NLO}$ $+ \left| \alpha_s^2 d\sigma^{\text{NNLO}} \right|$ $d\sigma$ =

~10-30 %

N³LO splitting functions, analytic resummation, SCET, beam functions etc.

the precision wishlist

latest update LH2021 Huss, Huston, Jones, Pellen [2207.02122]

				process	known	desired
process	known	desired			NNLO _{QCD}	2
$pp \rightarrow H$	$N^{3}LO_{HTL}$	$N^4 LO_{HTL}$ (incl.) NNLO ^(b,c) _{QCD}		$pp \rightarrow 2 {\rm jets}$	$NLO_{OCD} + NLO_{EW}$	$N^{3}LO_{QCD} + NLO_{EW}$
	$NNLO_{QCD}^{(t)}$			$pp \rightarrow 3 {\rm jets}$	$NNLO_{OCD} + NLO_{EW}$	
	$N^{(1,1)}LO^{(H1L)}_{QCD\otimes EW}$			Tal	ole 2: Precision wish list:	iet final states.
$pp \rightarrow H + j$	$NNLO_{HTL}$		l			J
	$\rm NLO_{QCD}$	$\mathrm{NNLO}_{\mathrm{HTL}} \otimes \mathrm{NLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$				
	$\rm N^{(1,1)}LO_{QCD\otimes EW}$		$pp \rightarrow V + 2i$	NLO _{QCD}	$+ \text{NLO}_{\text{EW}}$ (QCD composition	nent) NNLOgga
$pp \rightarrow H + 2j$	$\mathrm{NLO}_{\mathrm{HTL}} \otimes \mathrm{LO}_{\mathrm{QCD}}$	$\begin{split} & \text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \\ & \text{N}^3 \text{LO}_{\text{QCD}}^{(\text{VBF}^*)} \\ & \text{NNLO}_{\text{QCD}}^{(\text{VBF})} \end{split}$		$\rm NLO_{QCD}$	$+ NLO_{EW}$ (EW compone	ent)
	$N^{3}LO_{QCD}^{(VBF^{*})}$ (incl.)		$pp \rightarrow V + b\bar{b}$	NLO _{QCD}		$\rm NNLO_{QCD} + \rm NLO_{EW}$
	$\mathrm{NNLO}_\mathrm{QCD}^{\mathrm{(VBF}^*)}$		$pp \rightarrow VV' + 1j$	NLO _{QCD}	$+ \mathrm{NLO}_{\mathrm{EW}}$	NNLO _{QCD}
	$\mathrm{NLO}_{\mathrm{EW}}^{(\mathrm{VBF})}$					

$nn \rightarrow \gamma\gamma \pm i$	$\rm NNLO_{QCD} + \rm NLO_{EW}$	
	$+ \mathrm{NLO}_{\mathrm{QCD}} (gg \text{ channel})$	
$pp \rightarrow \gamma \gamma \gamma$	NNLO _{QCD}	$\mathrm{NNLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$

 $nn \rightarrow t\bar{t} \pm i$	$\rm NLO_{QCD}$ (off-shell effects)	$NNLO_{QCD} + NLO_{EW}$ (w/ decays)	
<i>pp</i> 7 <i>tt</i> + <i>j</i>	$\rm NLO_{EW}~(w/o~decays)$		
$pp \to t\bar{t} + 2j$	$\rm NLO_{QCD}~(w/o~decays)$	$\rm NLO_{QCD} + \rm NLO_{EW}~(w/~decays)$	
$pp \to t\bar{t} + V'$	$\rm NLO_{QCD} + \rm NLO_{EW}~(w/o~decays)$	$\rm NNLO_{QCD} + \rm NLO_{EW}~(w/~decays)$	
$pp \to t \bar{t} + \gamma$	$\overline{\text{NLO}_{\text{QCD}}}$ (off-shell effects)		
$pp \to t \bar{t} + Z$	$\overline{\text{NLO}_{\text{QCD}}}$ (off-shell effects)		
$pp \to t \bar{t} + W$	$\overline{\text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}$ (off-shell effects)		

 $pp \rightarrow t\bar{t}t\bar{t}$ Full $NLO_{QCD} + NLO_{EW}$ (w/o decays)

 $NLO_{QCD} + NLO_{EW}$ (off-shell effects)

NNLO_{QCD}

precision measurements

computations at the precision frontier

bare amplitudes
$$A^{(L),4-2\epsilon} = \sum_{i} c_i(\epsilon, \{p\}) \mathcal{F}_i(\epsilon, \{p\})$$

integrals/special functions

finite remainders
$$F^{(L)} = A^{(L),4-2\epsilon} - \sum_{k=1}^{L} I^{(k),4-2\epsilon} A^{(L-k),4-2\epsilon}$$

universal IR/UV poles

[Catani (1998)][Becher, Neubert (2009)] [Magnea, Gardi (2009)]

computational toolbox

all-in-one cuts to master integrals

on-shell methods

hidden simplicity and underlying geometry

momentum twistors

rational kinematics

integrand reduction

syzygy relations optimising systems of IBP identities

finite fields

exact numerics - truncated over e.g. prime numbers

recursion relations

reusing common blocks to evaluate diagrams efficiently

computational toolbox

mbers

part I: finite fields arithmetic and two-loop amplitudes

with: Brønnum-Hansen, Becchetti, Chaubey, Hartanto, Marcoli, Marzucca, Moodie, Peraro, Chicherin, Gehrmann, Henn, Zoia

finite field arithmetic

not a new idea - used in many computer algebra systems

solving IBP systems: e.g. FINRED [von Manteuffel], KIRA+FIREFLY [Maierhoefer, Usovitsch, Uwer, Klappert, Lange]

framework for amplitude computations: FINITEFLOW [Peraro (2019)]

(* take some, reasonably large, prime number *) FFPrimeNo[1] (* all quantities evaluated modulo a prime number *) Mod[-3,FFPrimeNo[1]] Mod[87+FFPrimeNo[1],FFPrimeNo[1]] Solve[b*3=87,Modulus \rightarrow FFPrimeNo[1]][[1]] (* already implemented in Mathematica *) Mod[87/3+FFPrimeNo[1],FFPrimeNo[1]] 9223 372 036 854 775 643 9223 372 036 854 775 640 87 {b \rightarrow 29} 29

NB: multiplicative inverse

extremely efficient solutions to linear algebra systems

other talks at this year's ACAT De Laurentis Moodie Usovitsch

$$A^{(L),4-2\epsilon} = \sum_{i} c_i(\epsilon, \{p\}) \mathcal{F}_i(\epsilon, \{p\})$$

rational functions

multiple numerical (mod prime) evaluations can used to reconstruct complete analytic information

Newton (polynomial) and Thiele (rational) interpolation

(* implement the Newton interpolation algorithm *)
NewtonReconstruct[z_, zvalues_List, fvalues_List, primeno_]:=Module[{res,maxdegree,aa,eqs,sol},
maxdegree = Length[zvalues]-1;
res = Sum[aa[r]*Product[(z-zvalues[[i+1]]),{i,0,r-1}],{r,0,maxdegree}];
eqs = Equal@@@Transpose[{res /. ({Rule[z,#]}&/@zvalues),fvalues}];
sol = Solve[eqs,Table[aa[i],{i,0,Length[fvalues]-1}],{Modulus->primeno}];
Return[res/. sol[[1]]];
]

fff[z_]:=15/2*z+119/6*z^2; values = {19,44,78}; FFRatMod[fff/@values,FFPrimeNo[0]] test = NewtonReconstruct[z,values,%,FFPrimeNo[0]] Collect[%,z,FFRatRec[#,FFPrimeNo[0]]&]

{6148914691236524491, 6148914691236555916, 121251}

 $6\,148\,914\,691\,236\,524\,491\,+\,1257\,\,(-\,19\,+\,z\,)\,\,+\,1\,537\,228\,672\,809\,129\,317\,\,(-\,44\,+\,z\,)\,\,(-\,19\,+\,z\,)$

 $\frac{15 z}{2} + \frac{119 z^2}{6}$

Rational external kinematics: e.g. Momentum Twistors (Hodges)

> Trivial parallelisation of sample points

finite fields for amplitudes

useful features:

- reconstruct exact results using chinese remainder theorem
- extremely efficient solutions to large linear systems
- reconstruct rational functions using Newton/Thiele interpolation
- modular approach in FiniteFlow allows us to link different algorithms and avoid large intermediate steps

canonical form [Henn '13] DE of 88 master integrals

IBP reduction and reconstruction over finite fields: good basis leads to simple reconstruction

dLog alphabet of 71 letters

numerical evaluation with generalised series expansions (DiffExp)

$$d\vec{\mathcal{I}}(\vec{x},\varepsilon) = \varepsilon \, dA(\vec{x}) \, \vec{\mathcal{I}}(\vec{x},\varepsilon),$$
$$A(\vec{x}) = \sum c_i \log(w_i(\vec{x})).$$

$$\begin{aligned} \mathcal{I}_1 &= \epsilon^4 \, 8 \, d_{23} \, d_{45} \left(d_{12} + m_t^2 \right) I_{1,1,1,1,1,1,1,1,1,1,1,1,0,0,0}, \\ \mathcal{I}_2 &= \epsilon^4 \, \frac{d_{45}}{2 \, \mathrm{tr}_5} I_{1,1,1,1,1,1,1,1,0,0,0}^{[11]}, \\ \mathcal{I}_3 &= \epsilon^4 \, \frac{d_{45}}{2 \, \mathrm{tr}_5} I_{1,1,1,1,1,1,1,0,0,0}^{[12]} \,. \end{aligned}$$

high precision boundary values (AMFlow)

two-loop five-point processes in NJET

Channel	f64/1	£64	Evaluation strategy		
Channel	Time (s)	f (%)	Time (s)	f (%)	
gg ightarrow ggg	1.39	69	1.89	77	
gg ightarrow ar q qg	1.35	91	1.37	91	
$qg \rightarrow qgg$	1.34	92	1.57	93	
$q\bar{q} ightarrow ggg$	1.34	93	1.38	93	
$\bar{q}Q \rightarrow Q\bar{q}g$	1.14	99	1.16	99	
$\bar{q}\bar{Q} ightarrow \bar{q}\bar{Q}g$	1.36	99	1.39	99	
$\bar{q}g ightarrow \bar{q}Q\bar{Q}$	1.36	99	1.39	99	
$\bar{q}q \rightarrow Q\bar{Q}g$	1.14	99	1.14	99	
$\bar{q}g ightarrow \bar{q}q\bar{q}$	1.84	99	1.90	99	
$\bar{q}\bar{q} o \bar{q}\bar{q}g$	1.82	99	1.94	99	
$\bar{q}q ightarrow q\bar{q}g$	1.71	99	1.77	99	
$gg \rightarrow \gamma \gamma g *$	9	99	26	99	

https://bitbucket.org/njet/njet

from Ryan Moodie's slides

part II: amplitude neural networks

with: Aylett-Bullock, Butter, Luchmann, Moodie, Pitz, Plehn

other talks and new results! Bothmann, Butter, Truong, Janssen

optimising simulations

how can we speed up simulations with expensive amplitude calls?

SB, (Aylett-)Bullock [2002.07516] Aylett-Bullock, SB, Moodie [2106.09474]

- Single NN does badly
- Understanding IR sectors via FKS improves reliablity (ensemble of networks)
- Error estimates by varying model initialisation
- Various tests suggest single run speed improvements at least ×10

Bayesian Networks

SB, Butter, Luchmann, Pitz, Plehn [2206.14831]

another experiment with loop amplitudes gg→YYg, gg→YYgg @(IL)^2 [See talk by Butter]

- better defined error estimates
- improved training via loss and performance boosting

outlook

- new theory techniques are essential to meet the precision requirements at the LHC
- finite field arithmetic is making a dent in the 2L 2→3 wishlist
- some progress for amplitudes with internal masses (ttj)
- amplitudes neural networks look to be a promising way to significantly optimise MC simulations