Loop amplitudes at the precision frontier

Simon Badger (University ofTurin)

based on work with:
Aylett-Bullock, Brønnum-Hansen, Becchetti, Butter, Chaubey, Hartanto, Luchmann, Marcoli, Marzucca, Moodie, Peraro, Pitz, Plehn, Chicherin, Gehrmann, Henn, Zoia

ACAT, Bari

27th Ocotber 2022

motivation: where is the precision frontier?

part I:
 finite field arithmetic and two-loop amplitudes

part II:
amplitude neural networks

from theory to experiment

from theory to experiment

from theory to experiment:

from theory to experiment: precison frontier \rightarrow I \%

loop frontier

N3LO 2 $\rightarrow 2$, N4LO $2 \rightarrow 1(\mathrm{gg} \rightarrow \mathrm{H})$

IR frontier

N3LO splitting functions, analytic resummation, SCET, beam functions etc.

the precision wishlist

latest update LH202 I Huss, Huston, Jones, Pellen [2207.02 I 22]

precision
measurements
computations at the precision frontier

bare amplitudes

$$
A^{(L), 4-2 \epsilon}=\sum_{i} c_{i}(\epsilon,\{p\}) \mathcal{F}_{i}(\epsilon,\{p\})
$$

rational functions integrals/special functions

$$
F^{(L)}=A^{(L), 4-2 \epsilon}-\sum_{k=1}^{L} I^{(k), 4-2 \epsilon} A^{(L-k), 4-2 \epsilon}
$$

universal IR/UV poles
[Catani (1998)][Becher, Neubert (2009)]
[Magnea, Gardi (2009)]

computational toolbox

numerical unitarity

on-shell methods

hidden simplicity and underlying geometry

momentum twistors

rational kinematics

integrand reduction
 algebraic reduction

syzygy relations

optimising systems of IBP identities
recursion relations
reusing common blocks to evaluate diagrams efficiently

computational toolbox

part I:
 finite fields arithmetic and two-loop amplitudes

with: Brønnum-Hansen, Becchetti, Chaubey, Hartanto, Marcoli, Marzucca, Moodie, Peraro, Chicherin, Gehrmann, Henn, Zoia

finite field arithmetic

not a new idea - used in many computer algebra systems

solving IBP systems: e.g. FINRED [von Manteuffe],
 KIRA+FIREFLY [Maierhoefer, Usovitsch, Uwer, Klappert, Lange]

framework for amplitude computations: FINITEFLOW [Peraro (2019)]

```
(* take some, reasonably large, prime number *)
FFPrimeNo[1]
(* all quantities evaluated modulo a prime number *
Mod[-3,FFPrimeNo[1]]
Mod[87+FFPrimeNo[1],FFPrimeNo[1]]
Solve[b*3==87,Modulus }->\mathrm{ FFPrimeNo[1]][[1]]
(* already implemented in Mathematica *)
```

Mod[87/3+FFPrimeNo[1], FFPrimeNo [1]]
9223372036854775643
9223372036854775640
87
$\{b \rightarrow 29\}$
29
extremely efficient solutions
to linear algebra systems
other talks at this year's ACAT
De Laurentis
Moodie
Usovitsch

$$
A^{(L), 4-2 \epsilon}=\sum_{i} c_{i}(\epsilon,\{p\}) \mathcal{F}_{i}(\epsilon,\{p\})
$$

rational functions

multiple numerical (mod prime) evaluations can used to reconstruct complete analytic information

> Newton (polynomial) and Thiele (rational) interpolation

Rational external kinematics: e.g. Momentum Twistors (Hodges)

```
* implement the Newton interpolation algorithm *
NewtonReconstruct[z_, zvalues_List, fvalues_List, primeno_]:=Module[{res,maxdegree,aa,eqs,sol},
maxdegree = Length[zvalues]-1;
res = Sum[aa[r]*Product[(z-zvalues[[i+1]]),{i,0,r-1}],{r,0,maxdegree}];
eqs = Equal@@@Transpose[{res /. ({Rule[z,#]}&/@zvalues),fvalues}];
sol = Solve[eqs,Table[aa[i],{i,0,Length[fvalues]-1}],{Modulus->primeno}];
Return[res/. sol[[1]]];
]
fff[\mp@subsup{z}{-}{\prime}]:=15/2*z+119/6* *^2;
values = {19,44,78};
FFRatMod[fff/@values,FFPrimeNo[0]]
test = NewtonReconstruct[z,values,%,FFPrimeNo[0]]
Collect[%,z,FFRatRec[#,FFPrimeNo[0]]&]
{6148914691236524491, 6148914691236555 916, 121 251}
6148914691236524491 + 1257 (-19 + z) + 1537228672809129317 (-44 + z)(-19 + z)
\frac{15z}{2}+\frac{119\mp@subsup{z}{}{2}}{6}
```


Trivial parallelisation of sample points

finite fields for amplitudes

useful features:

- reconstruct exact results using chinese remainder theorem
- extremely efficient solutions to large linear systems
- reconstruct rational functions using Newton/Thiele interpolation
- modular approach in FiniteFlow allows us to link different algorithms and avoid large intermediate steps

amplitudes $\rightarrow d \sigma$

$$
A^{(L), 4-2 \epsilon}=\sum_{i} c_{i}\left(\epsilon,\{p\} \quad F_{i}(\epsilon,\{p\})\right.
$$

pentagon functions. now with one off-shell leg [Chicherin, Sotnikov, Zoia '2I]

$\mathrm{d} \sigma \mathrm{gg} \rightarrow \mathrm{YYg}$

[SB et al. 2 I 09.1 2003]

$A^{(2)} p p \rightarrow W 2 j$ Lcv
[Abreu et al. $2 \mid 10.0754$ I]

$$
d \sigma p p \rightarrow 3 j \text { Lcv }
$$

[Czakon et al. 2 106.0533 I]

LCV = Leading Colour
Double Virtual

$$
\text { d } \sigma \text { gg } \rightarrow 3 \mathrm{~g} \text { LCV }
$$

[Chen et al. 2203.13531]

$d \sigma p p \rightarrow W b b$ Lcv
 [Hartanto et al. 2205.01687]

$A^{(2)} \mathrm{pp} \rightarrow$ WYj Lcv
[SB et al. 220I.04075]
$\mathrm{d} \sigma \mathrm{Pp} \rightarrow \mathrm{YYj}$ LCV
[Czakon et al. 2 105.06940]

differential equations for $\mathrm{pp} \rightarrow \mathrm{tt}+\mathrm{j}$

[SB, Becchetti, Chaubey, Marzucca (to appear)]
|st steps towards pp \rightarrow tt+j @ NNLO in QCD
see also IL pp $\rightarrow \mathrm{tt+j} \mathrm{O}\left(\varepsilon^{2}\right)$ [SB, Becchetti, Chaubey, Marzucca]
canonical form [Henn 'I3] DE of 88 master integrals

$$
\begin{aligned}
& d \overrightarrow{\mathcal{I}}(\vec{x}, \varepsilon)=\varepsilon d A(\vec{x}) \overrightarrow{\mathcal{I}}(\vec{x}, \varepsilon) \\
& A(\vec{x})=\sum c_{i} \log \left(w_{i}(\vec{x})\right) .
\end{aligned}
$$

IBP reduction and reconstruction
over finite fields: good basis leads to simple reconstruction
dLog alphabet of 7 I letters
numerical evaluation with generalised series expansions (DiffExp)

$$
\begin{aligned}
& \mathcal{I}_{1}=\epsilon^{4} 8 d_{23} d_{45}\left(d_{12}+m_{t}^{2}\right) I_{1,1,1,1,1,1,1,1,-1,0,0}, \\
& \mathcal{I}_{2}=\epsilon^{4} \frac{d_{45}}{2 \operatorname{tr}_{5}} I_{1,1,1,1,1,1,1,1,0,0,0}^{[11]}, \\
& \mathcal{I}_{3}=\epsilon^{4} \frac{d_{45}}{2 \operatorname{tr}_{5}} I_{1,1,1,1,1,1,1,0,0,0}^{[12]} .
\end{aligned}
$$

high precision boundary values
(AMFlow)

two-loop five-point processes in NJET

Channel	f64/f64		Evaluation strategy	
	Time (s)	$f(\%)$	Time (s)	$f(\%)$
$g g \rightarrow g g g$	1.39	69	1.89	77
$g g \rightarrow \bar{q} q g$	1.35	91	1.37	91
$q g \rightarrow q g g$	1.34	92	1.57	93
$q \bar{q} \rightarrow g g g$	1.34	93	1.38	93
$\bar{q} Q \rightarrow Q \bar{q} g$	1.14	99	1.16	99
$\bar{q} \bar{Q} \rightarrow \bar{q} \bar{Q} g$	1.36	99	1.39	99
$\bar{q} g \rightarrow \bar{q} Q \bar{Q}$	1.36	99	1.39	99
$\bar{q} q \rightarrow Q \bar{Q} g$	1.14	99	1.14	99
$\bar{q} g \rightarrow \bar{q} q \bar{q}$	1.84	99	1.90	99
$\bar{q} \bar{q} \rightarrow \bar{q} \bar{q} g$	1.82	99	1.94	99
$\bar{q} q \rightarrow q \bar{q} g$	1.71	99	1.77	99
$g g \rightarrow \gamma \gamma g *$	9	99	26	99

https://bitbucket.org/njet/njet
from Ryan Moodie's slides

part II: amplitude neural networks

with: Aylett-Bullock, Butter, Luchmann, Moodie, Pitz, Plehn
other talks and new results!
Bothmann, Butter, Truong, Janssen

optimising simulations

how can we speed up simulations with expensive amplitude calls?

SB, (Aylett-)Bullock [2002.075 16] Aylett-Bullock, SB, Moodie [2I 06.09474]

- Single NN does badly
- Understanding IR sectors via FKS improves reliablity (ensemble of networks)
- Error estimates by varying model initialisation
- Various tests suggest single run speed improvements at least $\times 10$
factorisation aware approach looks to be working nicely!

Maitre,Truong [2| 07.06625]

Bayesian Networks

SB, Butter, Luchmann, Pitz, Plehn [2206. I 483I]
another experiment with [See talk by Butter] loop amplitudes
gg \rightarrow YYg, $g g \rightarrow Y Y g g$ @(IL)^2

- better defined error estimates
- improved training via loss and performance boosting

outlook

- new theory techniques are essential to meet the precision requirements at the LHC
- finite field arithmetic is making a dent in the $2 \mathrm{~L} 2 \rightarrow 3$ wishlist
- some progress for amplitudes with internal masses (ttj)
- amplitudes neural networks look to be a promising way to significantly optimise MC simulations

