
Loop amplitudes at the 
precision frontier

Simon Badger (University of Turin)

ACAT, Bari
27th Ocotber 2022

based on work with: 
Aylett-Bullock, Brønnum-Hansen, Becchetti, Butter, Chaubey, 
Hartanto, Luchmann, Marcoli, Marzucca, Moodie, Peraro, Pitz, 

Plehn, Chicherin, Gehrmann, Henn, Zoia

 
Direzione Personale  

Area Gestione del Personale – Sezione Personale Docente e Ricercatore 
MG/smg 
 
VII/2 
 
Decreto Rettorale         
 
Oggetto: Prof. Simon BADGER - Nomina a professore di seconda fascia mediante chiamata diretta, 

ai sensi dell'art. 1, comma 9 della Legge 4/11/2005, n. 230. 

 
IL RETTORE 

Visto il D.P.R 10/11/1957, n. 3; 
Visto il D.P.R. 11/7/1980, n. 382; 
Vista la Legge 9/5/1989, n. 168; 
Vista la Legge 24/12/1993, n. 537; 
Visto il D. Lgs. 30/3/2001, n. 165; 
Vista la Legge 4/11/2005, n. 230 ed in particolare l’art 1, comma 9; 
Vista la Legge 30/12/2010, n.240 ed in particolare l’art. 29, comma 7; 

  Visti i DD.MM. 29/7/2011 e 12/6/2012 con cui sono stati determinati i settori concorsuali, 
ai sensi dell’art. 15 della Legge 240/2010; 
  Visto il D.P.R. 15/12/2011, n. 232 “Regolamento per la disciplina del trattamento 
economico dei professori e ricercatori universitari, a norma dell’art. 8, commi 1 e 3 della legge 30 
dicembre 2010, n. 240”, ed in particolare l’art. 2, comma 6 che prevede l’applicazione delle 
disposizioni del Regolamento stesso anche ai professori e ricercatori nominati in ruolo ai sensi 
dell'articolo 1, comma 9, della legge 4 novembre 2005, n. 230; 
         Visto lo Statuto dell’Università degli Studi di Torino, emanato con D.R. n. 1730 del 
15/03/2012;                    
 Vista la deliberazione  del Consiglio di Amministrazione n. 7/2016/II/3 del 19/7/2016 
“Applicazione art. 1, comma 9 della Legge 4/11/2005 n. 230 per la copertura di posti di professore 
ordinario, associato e di ricercatore mediante chiamata diretta di studiosi stabilmente impegnati 
all’estero e copertura di posti di professore ordinario mediante chiamata diretta di studiosi di 
chiara fama: definizione dei criteri per la determinazione della classe di stipendio”,  con cui è stato 
approvato che l’attribuzione fino alla classe 4^ di stipendio ai docenti nominati tramite chiamata 
diretta sia effettuata dagli uffici della Direzione Risorse Umane in relazione all’anzianità di servizio 
e che l’eventuale richiesta di attribuzione della 5^ classe stipendiale venga formulata con motivata 
deliberazione del Consiglio di Dipartimento, tenendo conto del curriculum ed evidenziando la 
levatura e il particolare profilo scientifico del docente; 
 Visto il D.P.C.M. 3/9/2019, relativo all’adeguamento del trattamento economico del 
personale non contrattualizzato; 

Preso atto delle deliberazioni del 7/11/2019 e 20/1/2020, con cui il Consiglio del 
Dipartimento di Fisica ha proposto la chiamata diretta nel ruolo di professore di seconda fascia ai 
sensi dell'art., 1 comma 9 della Legge 230/2005, del Prof. Simon BADGER, studioso 
impegnato all’estero, per i l  settore scientifico-disciplinare FIS/02 – Fisica teorica modelli 
e metodi matematici , settore concorsuale 02/A2 – Fisica teorica delle interazioni 
fondamentali; 

Viste le deliberazioni del 17/12/2019 e del 18/12/2019, con le quali il Senato Accademico 
e il Consiglio di Amministrazione hanno rispettivamente espresso parere favorevole e approvato 
l’inoltro al MIUR della proposta di chiamata diretta del Prof. Simon BADGER nel ruolo di 
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motivation:
where is the precision frontier?

part 1:
finite field arithmetic and two-loop amplitudes

part 1I:
amplitude neural networks
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~1-10 %~10-30 %



multiplicity frontier

loop frontier

IR frontier

L O(N),≤1
EOM O(N),≤2

EOM O(N),≤3
EOM O(N),≤4

EOM

1

2

3

4

Table 1. In the Lth row the table gives examples of diagrams contributing to the L-loop contri-
bution to Γ(N)

gg . Subgraphs whose UV-counterterms require the various EOM operators O(N),k
EOM are

highlighted with dashed boxes.

O(N),3
EOM = g2(D.F )a

∑

i+j+k
=N−4

Cabcd
ijk (∂iAb)(∂jAc)(∂kAd) (3.15)

O(N),4
EOM = g3(D.F )a

∑

i+j+k+l
=N−5

Cabcde
ijkl (∂iAb)(∂jAc)(∂kAd)(∂lAe) (3.16)

Let us now discuss the color decomposition of the C-coefficients. While at rank two and

three possible color structures are limited to δab and fabc, color decompositions for operators

of higher rank are in general non-trivial, in particular when keeping the color gauge group

general as we do here. However the fact that we only require counterterms valid up to

certain loop orders imposes strong contstraints and allows us to identify the following color

decompositions:

Cabc
ij = fabcκij (3.17)

Cabcd
ijk = (ff)abcdκ(1)ijk + dabcd4 κ(2)ijk + dabcd

4̂ff
κ(3)ijk (3.18)

Cabcde
ijkl = (fff)abcdeκ(1)ijkl + dabcde4f κ(2)ijkl , (3.19)

where the different color structures are defined as

– 10 –

N3LO splitting functions, analytic 
resummation, SCET, beam functions etc.

4

H

H

FIG. 1: Top: example of a triple-real emission amplitude
with a quark-antiquark pair in the final state which con-
tributes to the bare beam function in the leading-color ap-
proximation and therefore has been included in our compu-
tation. Bottom: example of a similar amplitude which is
sub-leading in Nc and therefore is not included in our com-
putation. The box labeled H denotes the hard scattering
process.

where p is the four-momentum of the incoming parton,
p̄ is the complementary collinear direction, s = 2p · p̄,
[dki] = dd�1

ki/((2⇡)d�12k(0)i ) is a single-parton phase-

space element, knR =
nRP
i=1

ki and P
(RnRV nV )
qq denotes the

nV -loop contribution to the collinear splitting functions
that describes the q ! q

⇤ + g1 + ... + gnR process or, if
nR � 2, the q ! q

⇤ + q
0 + q̄

0 + g3 + ...+ gnR process. We
note that the functions B

b,RnRV nV
qq (t, z) scale uniformly

with the transverse virtuality, i.e.

B
b,RnRV nV
qq (t, z) ⇠ t

�1�3✏
B̃

b,RnRV nV
qq (z). (15)

This observation will be important for the discussion be-
low where we describe the computation of the double-
virtual single-real contribution B

b,R1V 2
qq .

The calculation of the triple-real and double-real
single-virtual contributions B

b,R3V 0
qq and B

b,R2V 1
qq was

discussed in Refs. [28, 29], respectively. We will briefly
summarize these discussions here.

Although, as we already said, the collinear splitting
functions in Eq. (14) are universal objects, they are not
available in closed form beyond NNLO. Since, as shown
in Eq. (14), our goal is not only to construct the split-
ting functions, but also to integrate them over the real-
emission phase space, it is important to have an algo-
rithm that allows us to perform both of these tasks in a
concerted way. We achieve this by following the proce-
dure outlined in Ref. [36] that describes how to extract
splitting functions by considering emissions o↵ a single
external line and by employing relevant projection op-
erators. An important ingredient in this construction is
the use of physical gauges for both virtual and real glu-

ons that, unfortunately, complicates the computations
significantly. In Ref. [36] this procedure was used to
explicitly construct all tree-level splitting functions at
NNLO in QCD. Here, we just use this procedure to find
a suitable expression for the collinear splitting functions

P
(RnRV nV )
qq (p, p̄, {ki}) that may involve unintegrated mo-

menta of both real and virtual gluons. Once such a repre-

sentation for P (RnRV nV )
qq (p, p̄, {ki}) is available, we apply

reverse unitarity [38] to map phase-space integrals onto
loop integrals. We then use integration-by-parts tech-
nology [39, 40] to express each particular contribution
to B

bare
qq in terms of master integrals and to derive the

di↵erential equations that these integrals satisfy [41–44].
A detailed discussion of how the master integrals are

computed from the relevant di↵erential equations can be
found in Refs. [28, 29]. Here, we just note that the use
of physical gauges makes their computation much more
di�cult, in that it introduces additional propagator-like
structures that arise from polarization sums of real and
virtual gluons. Unfortunately, this leads to a prolifer-
ation of integrals that need to be calculated. Another
interesting point is that the master integrals, that de-
scribe triple-real emissions, are initially written as linear
combinations of generalized polylogarithms of a complex-
valued variable

x = �1 +
z

2
± i

2

p
z(4� z), (16)

which arises during the rationalization of the di↵erential
equations, see Ref. [29]. Curiously, as we will see from
the final result, the dependence on x disappears once the
complete triple-real emission contribution to the beam
function is constructed.
In principle, one can compute the B

b,R1V 2
qq contribu-

tion to the beam function using a similar approach. This
would require the calculation of the two-loop correction
to the process q ! q

⇤ + g in a physical gauge; such com-
putation is, currently, not available. Fortunately, there
is a way out. The contribution we are interested in can
be extracted from the two-loop amplitude of the process
q(p)q̄(p̄) ! V +g(k1) in the limit when the gluon is emit-
ted along the direction of the incoming quark q. To see
this, consider the Mandelstam variables T = (p � k1)2,
U = (p̄� k1)2 and S = 2p · p̄ that are needed to describe
this process. Then, from the phase-space constraints in
Eq. (14), we find T = �t/z, U = �s(1 � z). Therefore,
we can obtain the required splitting function by studying
the T ! 0 limit of the NNLO QCD contribution to the
amplitude squared for the process q(p)q̄(p̄) ! V + g(k1),
and by extracting the contribution with the appropriate
T

�1�2✏ scaling.2 The calculation of the 0 ! qq̄V g scat-

2
According to Eq. (15), the N

3
LO contributions to the beam func-

tions scale as t�1�3✏
. In case of the double-virtual single-real

term Bb,R1V 2
qq , this scaling is obtained from the t�1�2✏

scal-

ing of the virtual amplitude squared and the t�✏
scaling of the

single-gluon phase space.

N3LO 2!2, N4LO 2!1 (gg!H)

N2LO 2!3 (pp!3j pp!W2j, pp!ttj,…)



the precision wishlist
latest update LH2021 Huss, Huston, Jones, Pellen [2207.02122] 

process known desired

pp æ H

N3LOHTL

NNLO(t)
QCD

N(1,1)LO(HTL)
QCD¢EW

N4LOHTL (incl.)

NNLO(b,c)
QCD

pp æ H + j

NNLOHTL

NLOQCD

N(1,1)LOQCD¢EW

NNLOHTL ¢ NLOQCD + NLOEW

pp æ H + 2j

NLOHTL ¢ LOQCD

N3LO(VBFú)
QCD (incl.)

NNLO(VBFú)
QCD

NLO(VBF)
EW

NNLOHTL ¢ NLOQCD + NLOEW

N3LO(VBFú)
QCD

NNLO(VBF)
QCD

pp æ H + 3j
NLOHTL

NLO(VBF)
QCD

NLOQCD + NLOEW

pp æ V H
NNLOQCD + NLOEW

NLO(t,b)
ggæHZ

pp æ V H + j
NNLOQCD

NLOQCD + NLOEW
NNLOQCD + NLOEW

pp æ HH N3LOHTL ¢ NLOQCD NLOEW

pp æ HH + 2j

N3LO(VBFú)
QCD (incl.)

NNLO(VBFú)
QCD

NLO(VBF)
EW

pp æ HHH NNLOHTL

pp æ H + tt̄
NLOQCD + NLOEW

NNLOQCD (o�-diag.)
NNLOQCD

pp æ H + t/t̄ NLOQCD
NNLOQCD

NLOQCD + NLOEW

Table 1: Precision wish list: Higgs boson final states. NxLO(VBFú)
QCD means a calculation using

the structure function approximation. V = W, Z.
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process known desired

pp æ 2 jets
NNLOQCD

NLOQCD + NLOEW
N3LOQCD + NLOEW

pp æ 3 jets NNLOQCD + NLOEW

Table 2: Precision wish list: jet final states.

from this channel considerably more challenging. In Ref. [546], it was shown that the
impact of the new channels on the extraction of yb can be reduced using kinematic
shapes.
In Ref. [54], the two-loop leading colour planar helicity amplitudes for bb̄H pro-
duction in the 5FS were computed. The helicity amplitudes were analytically re-
constructed using finite field methods and the integrals appearing are evaluated
using generalised series expansions [124]. The massless 4-loop QCD corrections to
the bb̄H vertex were studied in Ref. [119], this result is an important step towards
N4LO bb̄ æ H production (in the 5FS) and H æ bb̄ decay.

1.7 Jet final states

An overview of the status of jet final states is given in Table 2.

2j: LH19 status: Di�erential NNLOQCD corrections at leading-colour calculated in the
NNLOJET framework [161]. Predictions using exact colour obtained with the sector-
improved residue subtraction formalism [193] confirming in the case of inclusive-jet
production at 13 TeV and R = 0.7 that the leading-colour approximation is well
justified for phenomenological applications. Complete NLO QCD+EW corrections
available [547].

Completion of the full-colour result using the antenna subtraction method [548] cor-
roborating the small impact of sub-leading colour contributions in inclusive-jet ob-
servables, however, finding larger e�ects in di-jet production for the triple-di�erential
(pT,avg, yú, yboost) setup of the CMS 8 TeV measurement. NNLOQCD corrections to
bottom quark production were computed using the qT -subtraction method [228] in
the four-flavour scheme with massive bottoms.
Important three-loop amplitudes became available that would enter the calculation
of jet production at N3LOQCD: four-quark scattering (qq̄ æ QQ̄) [40] and gluon
scattering [39].
Inclusive jets can be measured in both ATLAS and CMS with 5% uncertainty in
the cross sections (in the precision range), a precision that requires NNLOQCD cross
sections. Global PDF fits require NNLOQCD calculations of double and even triple
di�erential observables, requiring the use of full colour predictions. The measure-
ments extend to jet transverse momenta of the order of 3–5 TeV, necessitating the
precise calculation of EW corrections as well. Eventually, PDFs will be determined
at the N3LOQCD level, requiring the use of N3LOQCD predictions for the input
processes, including inclusive jet production, necessitating the calculation of di-jet
production to this order.

20

process known desired

pp æ V

N3LOQCD

N(1,1)LOQCD¢EW

NLOEW

N3LOQCD + N(1,1)LOQCD¢EW

N2LOEW

pp æ V V Õ NNLOQCD + NLOEW

+ NLOQCD (gg channel)

NLOQCD

(gg channel, w/ massive loops)

N(1,1)LOQCD¢EW

pp æ V + j NNLOQCD + NLOEW hadronic decays

pp æ V + 2j
NLOQCD + NLOEW (QCD component)

NLOQCD + NLOEW (EW component)
NNLOQCD

pp æ V + bb̄ NLOQCD NNLOQCD + NLOEW

pp æ V V Õ + 1j NLOQCD + NLOEW NNLOQCD

pp æ V V Õ + 2j
NLOQCD (QCD component)

NLOQCD + NLOEW (EW component)
Full NLOQCD + NLOEW

pp æ W +W + + 2j Full NLOQCD + NLOEW

pp æ W +W ≠ + 2j NLOQCD + NLOEW (EW component)

pp æ W +Z + 2j NLOQCD + NLOEW (EW component)

pp æ ZZ + 2j Full NLOQCD + NLOEW

pp æ V V ÕV ÕÕ NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ W ±W +W ≠ NLOQCD + NLOEW

pp æ ““ NNLOQCD + NLOEW N3LOQCD

pp æ “ + j NNLOQCD + NLOEW N3LOQCD

pp æ ““ + j
NNLOQCD + NLOEW

+ NLOQCD (gg channel)

pp æ “““ NNLOQCD NNLOQCD + NLOEW

Table 3: Precision wish list: vector boson final states. V = W, Z and V Õ, V ÕÕ = W, Z, “. Full
leptonic decays are understood if not stated otherwise.
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process known desired

pp æ V

N3LOQCD

N(1,1)LOQCD¢EW

NLOEW

N3LOQCD + N(1,1)LOQCD¢EW

N2LOEW

pp æ V V Õ NNLOQCD + NLOEW

+ NLOQCD (gg channel)

NLOQCD

(gg channel, w/ massive loops)

N(1,1)LOQCD¢EW

pp æ V + j NNLOQCD + NLOEW hadronic decays

pp æ V + 2j
NLOQCD + NLOEW (QCD component)

NLOQCD + NLOEW (EW component)
NNLOQCD

pp æ V + bb̄ NLOQCD NNLOQCD + NLOEW

pp æ V V Õ + 1j NLOQCD + NLOEW NNLOQCD

pp æ V V Õ + 2j
NLOQCD (QCD component)

NLOQCD + NLOEW (EW component)
Full NLOQCD + NLOEW

pp æ W +W + + 2j Full NLOQCD + NLOEW

pp æ W +W ≠ + 2j NLOQCD + NLOEW (EW component)

pp æ W +Z + 2j NLOQCD + NLOEW (EW component)

pp æ ZZ + 2j Full NLOQCD + NLOEW

pp æ V V ÕV ÕÕ NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ W ±W +W ≠ NLOQCD + NLOEW

pp æ ““ NNLOQCD + NLOEW N3LOQCD

pp æ “ + j NNLOQCD + NLOEW N3LOQCD

pp æ ““ + j
NNLOQCD + NLOEW

+ NLOQCD (gg channel)

pp æ “““ NNLOQCD NNLOQCD + NLOEW

Table 3: Precision wish list: vector boson final states. V = W, Z and V Õ, V ÕÕ = W, Z, “. Full
leptonic decays are understood if not stated otherwise.
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process known desired

pp æ tt̄

NNLOQCD + NLOEW (w/o decays)

NLOQCD + NLOEW (o�-shell e�ects)

NNLOQCD (w/ decays)

N3LOQCD

pp æ tt̄ + j
NLOQCD (o�-shell e�ects)

NLOEW (w/o decays)
NNLOQCD + NLOEW (w/ decays)

pp æ tt̄ + 2j NLOQCD (w/o decays) NLOQCD + NLOEW (w/ decays)

pp æ tt̄ + V Õ NLOQCD + NLOEW (w/o decays) NNLOQCD + NLOEW (w/ decays)

pp æ tt̄ + “ NLOQCD (o�-shell e�ects)

pp æ tt̄ + Z NLOQCD (o�-shell e�ects)

pp æ tt̄ + W NLOQCD + NLOEW (o�-shell e�ects)

pp æ t/t̄
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NNLOQCD + NLOEW (w/ decays)
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pp æ tt̄tt̄ Full NLOQCD + NLOEW (w/o decays)
NLOQCD + NLOEW (o�-shell e�ects)

NNLOQCD

Table 4: Precision wish list: top quark final states. NNLOQCD
ú means a calculation using the

structure function approximation. V Õ = W, Z, “.

tt̄: LH19 status: Fully di�erential NNLOQCD computed for on-shell top-quark pair
production [187, 188, 227, 727], also available as fastNLO tables [728]; polarised
two-loop amplitudes known [729]; combination of NNLOQCD and NLOEW correc-
tions performed [730]; also multi-jet merged predictions with NLOEW corrections
available [731]; resummation e�ects up to NNLL computed [732–737]; NNLOQCD
+ NNLL for (boosted) top-quark pair production [738]; top quark decays known at
NNLOQCD [189,252]; Complete set of NNLOQCD corrections to top-pair production
and decay in the NWA for intermediate top quarks and W bosons [739]; W +W ≠bb̄
production with full o�-shell e�ects calculated at NLOQCD [740–743] including lep-
tonic W decays, and in the lepton plus jets channel [744]; full NLOEW corrections for
leptonic final state available [290]; calculations with massive bottom quarks available
at NLOQCD [745,746];
NLOQCD predictions in NWA matched to parton shower [747], and multi-jet merged
for up to 2 jets in SHERPA [748] and HERWIG 7.1 [749]; bb̄4¸ at NLOQCD matched to
a parton shower in the POWHEG framework retaining all o�-shell and non-resonant
contributions [750].

The first NNLOQCD computation matched to parton shower using the MINNLOPS
method has been presented in Ref. [751,752] for on-shell top production. The decays
of the top quark are described at tree level retaining spin correlation. Phenomeno-
logical results are also produced by comparing them against experimental data. As
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momentum twistors
rational kinematics

numerical unitarity
all-in-one cuts to master integrals

syzygy relations
optimising systems of IBP identities

recursion relations
reusing common blocks to evaluate diagrams efficiently

on-shell methods
hidden simplicity and underlying geometry

integrand reduction
algebraic reduction  

computational toolbox

finite fields
exact numerics - truncated over e.g. prime numbers



momentum twistors
rational kinematics

numerical unitarity
all-in-one cuts to master integrals

syzygy relations
optimising systems of IBP identities

recursion relations
reusing common blocks to evaluate diagrams efficiently

on-shell methods
harnessing gauge symmetry

integrand reduction
algebraic reduction  

computational toolbox

finite fields
exact numerics - truncated over e.g. prime numbers
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part 1:
finite fields arithmetic and two-loop amplitudes

with: Brønnum-Hansen, Becchetti, Chaubey, Hartanto, Marcoli, 
Marzucca, Moodie, Peraro, Chicherin, Gehrmann, Henn, Zoia



finite field arithmetic
not a new idea - used in many computer algebra systems

framework for amplitude
computations: FINITEFLOW [Peraro (2019)]

NB: multiplicative inverse

solving IBP systems: e.g. FINRED [von Manteuffel],

KIRA+FIREFLY [Maierhoefer, Usovitsch, Uwer, Klappert, Lange]

extremely efficient solutions 
to linear algebra systems

other talks at this year’s ACAT
De Laurentis
Moodie
Usovitsch
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multiple numerical (mod prime) evaluations can used to 
reconstruct complete analytic information 

Newton (polynomial) and Thiele (rational) 
interpolation 

Rational external kinematics: e.g. 
Momentum Twistors (Hodges)

Trivial parallelisation of 
sample points



finite fields for amplitudes
useful features:

• reconstruct exact results using chinese remainder theorem
• extremely efficient solutions to large linear systems
• reconstruct rational functions using Newton/Thiele interpolation
• modular approach in FiniteFlow allows us to link different algorithms 

and avoid large intermediate steps

QGRAF + FORM/MATHEMATICA + rational 
phase-space

(Momentum Twistors)

colour ordered
helicity amplitudes

complete reduction 
setup implemented in 

FINITEFLOW

linear relations, univariate apart,
polynomial reconstruction

M (2)({p}, ✏) =
X

i

ci({p}, ✏)Fi({p}, ✏)
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amplitudes ! dσ

helicity NcF
(2)
1 /F (1) 1

Nc
F (2)
2 /F (1) nfF

(2)
3 /F (1)

+ + + + + �27.76 � 10.17i �1.673 � 0.2396i �5.228 � 4.034i

� + + + + �25.76 + 27.83i 0.3571 � 0.3213i 0.3363 � 4.424i

+ + + � + �24.16 + 14.59i 0.3698 � 0.5539i �4.951 + 0.6672i

�� + + + �20.23 + 0.8204i �0.4055 � 0.3549i 0.053 55 + 0.000 247 8i

� + + � + �28.58 + 32.90i 0.3917 � 0.000 548 9i 3.022 + 1.475i

+ + + �� �20.94 � 15.34i �0.3080 � 0.4558i �4.880 � 0.005 862i

Table 2: Numerical values of the partial amplitudes for the six independent helicities at
the benchmark point in Eq. (6.3). Values are quoted with Nc = 3 and nf = 5, to four
significant figures.

NcH(2)
1 /H(1) 1

Nc
H(2)

2 /H(1) nfH(2)
3 /H(1)

52.75 0.081 76 0.3956

Table 3: Numerical values for the components of the two-loop hard function normalised to
the one-loop hard function defined in Eq. (6.2) at the benchmark point of Eq. (6.3). Values
are quoted with Nc = 3 and nf = 5, to four significant figures.
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Figure 3: Histogram of the error estimate on the two-loop evaluations as given by the
scaling test. We use the evaluation strategy with a target accuracy of three digits and show
errors for all precision levels. We see 1.8% of points failing f64/f64 evaluation, with 1.2%

passing at f128/f64 and 0.6% passing at f128/f128. The evaluation strategy achieves
target accuracy for all of the 100 000 physical phase-space points tested.
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to include loop-induced gluon-fusion channels from at least one order higher in the perturbative
series. These corrections are the subject of this article.

High precision two-to-three scattering problems have presented an enormous challenge to the
theoretical community. The development of new techniques and methodology have been necessary
to address several major bottlenecks that have prevented predictions at NNLO in QCD from being
completed.

One important ingredient is the two-loop amplitudes for which complete sets of helicity am-
plitudes have recently been completed [10–13]. These new results have been achieved thanks to a
complete understanding of the special functions basis [14–17] and a new range of reduction tools
based in finite field arithmetic [18–20]. The end products are fully analytic formulae which can be
evaluated e�ciently over the phenomenologically relevant phase-space [10–13, 21–23].

Combining and integrating the amplitudes into di↵erential cross sections requires the subtrac-
tion of infrared divergences. To achieve this in a stable and e�cient way is an extremely hard
problem and many solutions have been proposed and applied in calculations up to NNLO. Such
algorithms often scale poorly with the number of external particles and only a handful of examples
for high multiplicity processes at NNLO currently exist [1, 24–26].

For the process considered in this article, the infrared divergences are only at NLO. However,
since the real radiation involves 2 ! 4 one-loop squared amplitudes, the automated numerical
algorithms are tested in extreme phase-space regions. The leading order (LO) QCD contributions
to the gluonic subprocess were first considered in Ref. [27] based on the compact one-loop five-
gluon amplitudes [28].

Our paper is organised as follows. We first review the computational setup, discussing the
amplitude-level ingredients and antenna subtraction method used to cancel infrared divergences.
We then present results for the NLO corrections to di↵erential cross sections at the 13 TeV LHC.
We study the perturbative convergence in both transverse momentum and mass variables as well
angular distributions in rapidity and the Collins-Soper angle before drawing our conclusions.

2. Computational setup

We consider the scattering process

gg! ��g + X (1)

at a hadron collider. As the process is loop-induced, the LO contribution is at order ↵3
s

and involves
the integration of a one-loop amplitude squared. The NLO QCD corrections are computed by
combining the two-loop virtual corrections to the 2 ! 3 process with the 2 ! 4 processes with
an additional unresolved parton: gg ! ��gg and gg ! ��qq̄. Pictorially, we can represent the
parton level cross sections up to NLO in QCD as,

�NLO
gg!��g+X

=

Z
d�3
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Figure 1: Di↵erential distributions in the transverse momentum pT (��) (left) and invariant mass m(��) (right) of the
diphoton system.
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Figure 2: Di↵erential distributions in the Collins-Soper angle |cos �CS (��)| (left) the azimuthal decorrelation ��(��)
(right) of the diphoton system.

By inspecting the two-dimensional di↵erential distribution in m(��) and |�CS (��)|, Figure 4
(left), we observe that the relative magnitude of the NLO corrections decreases with increas-
ing m(��), while the corrections remain uniform in |�CS (��)| for all bins in m(��). The two-
dimensional di↵erential distribution in |y(��)| and pT (��) also shows the decrease of the correc-
tions towards larger pT (��). The decrease is more pronounced at forward rapidity than at central
rapidity.

Considering two-dimensional distributions in pT (��) and m(��), Figure 5, largely reproduces
the features of the one-dimensional distributions of Figure 1, both for distributions in bins of
pT (��) or for varying lower cut in pT (��). The only novel feature is a non-uniform shape in m(��)
for the highest bin in pT (��) (lowest curves in left Figure 5), which is indicative of the onset of

5
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Double Virtual

A(L),4�2✏ =
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pentagon functions. now with one off-shell leg
[Chicherin, Sotnikov, Zoia ’21]
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ū

�

⌫e

ē
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Figure 1: Sample two-loop Feynman diagrams for W
+
�j production.

describing the details of the renormalisation constants, and giving explicit one-loop results
to facilitate future cross-checks.

2 Structure of the Amplitudes

We compute the two-loop amplitudes for the production of a W
+ boson in association with

a photon and a jet at hadron colliders, where the W
+ boson decays to a positron and an

electron neutrino (pp ! ⌫ee
+
�j), in the leading colour approximation,

0 ! �(p1, h1) + ū(p2, h2) + g(p3, h3) + d(p4, h4) + ⌫e(p5, h5) + e
+(p6, h6) . (2.1)

For simplicity we denote this process as W
+
�j production henceforth. Sample two-loop

Feynman diagrams contributing at leading colour are shown in Figures 1 and 2. The
colour decomposition of the W

+
�j L-loop amplitude is given by

A
(L)
6 (1� , 2ū, 3g, 4d, 5⌫ , 6ē) =

p

2eg2W gs n
L (T a3) ī2

i4
A

(L)
6 (1� , 2ū, 3g, 4d, 5⌫ , 6ē) , (2.2)

where n = m✏↵s/(4⇡), ↵s = g
2
s/(4⇡), m✏ = i(4⇡)✏e�✏�E , ✏ = (4 � d)/2 is the dimensional

regulator, and T
a are the generators of SU(Nc) in the fundamental representation, nor-

malised according to tr(T a
T
b) = �

ab. We denote by e, gW and gs the electron charge, the
weak and the strong coupling constants, respectively. The W

+
�j amplitude can be further

decomposed according to the source of photon radiation,

A
(L)
6 =

"
QuA

(L)
6,u +QdA

(L)
6,d +

 
X

q

Qq

!
A

(L)
6,q

#
P (s56)

+ (Qu �Qd)
h
A

(L)
6,e +A

(L)
6,WP (s56)

i
P (s156) ,

(2.3)
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A(2) pp!W2j LCV

A(2) pp!Wγj LCV

4

denominator on the right hand side are evaluated at the
matching order. The scale dependence of the di↵eren-
tial cross sections is shown explicitly to emphasize that
the scale choices in the numerator and denominator are
correlated.

In the upper two panels of fig. 4 we show the ratio
R3/2(pT (j1)). The ratio changes drastically when going
from LO to NLO mostly due to the change in the two-jet
cross section. The NNLO correction stabilizes the ratio
and leads to a very small scale dependence. The K

NNLO

factor slightly decreases for large momenta, however, it
is always fully contained within the NLO scale band. An
important observation is that the NNLO scale band is
very small in comparison to NLO, reducing it from about
10% down to 3%.

Next we consider the lower two panels in fig. 4, where
we show the ratio R3/2(HT ) for a central scale µ0 =
HT /2. This observable behaves similarly to R3/2(pT (j1))
albeit with a slightly larger scale dependence. The re-
duction in the scale uncertainty when going from NLO
to NNLO is of particular importance since this observ-
able is used experimentally for measurements of ↵S [5].
The leading source of perturbative uncertainty in this
data–theory comparison is the scale dependence. The
pdf dependence, which is not computed in this work, is
expected to be reduced in the ratio.

Jet rates are typically measured in slices of jet rapidity.
To demonstrate how our calculation performs in this sit-
uation, we divide the phase space in slices of the rapidity
di↵erence between the two leading jets

y
⇤ = |y(j1) � y(j2)|/2 , (8)

and define the ratio of the two- and three-jet rates as

R3/2(HT , y
⇤) =

d2
�3/dHT /dy

⇤

d2�2/dHT /dy⇤ . (9)

The NNLO prediction for this cross section ratio can
be found in fig. 5 . The prediction is shown relative to the
NLO one. The NNLO correction is negative across the
full kinematic range and, overall, behaves very similarly
to the one for the rapidity-inclusive ratio R3/2(HT ). This
remains the case as y

⇤ increases, at least in the range of
rapidities considered here.

IV. CONCLUSIONS

In this work we present for the first time NNLO-
accurate predictions for three-jet rates at the LHC. We
compute di↵erential distributions for typical jet observ-
ables like HT and the transverse momentum of the ith
leading jet, i = 1, 2, 3, as well as di↵erential three-to-two
jet ratios. Scale dependence is the main source of theoret-
ical uncertainty for this process at NLO, and it gets sig-
nificantly reduced after the inclusion of the NNLO QCD
corrections. Notably, the three-to-two jet ratios stabilize
once the second-order QCD corrections are accounted for.
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FIG. 4: The top two panels show R3/2(pT (j1)) (in absolute
and as ratio to NLO) and the bottom two panels R3/2(HT ).
The colours are the same as in fig. 1.

A central goal of the present work is to demonstrate
the feasibility of three-jet hadron collider computations
with NNLO precision. With this proof-of-principle goal
attained, one can now turn one’s attention to the broad
landscape of phenomenological applications for three-
jet production at the LHC. Examples include studies of
event-shapes [6, 39, 40], determination of the running
of the strong coupling constant ↵s through TeV scales
and resolving the question of scale setting in multi-jet
production. Another major benefit from having NNLO–
accurate predictions is the reliability of the theory uncer-
tainty estimates.

On the technical side, the enormous computational
cost of the present calculation (⇠ 106 CPUh) makes it
clear that further refinements in the handling of real ra-
diation contributions to NNLO calculations are desirable.

3

inclusive [fb] Kinc exclusive [fb] Kexc

�LO 213.2(1)+21.4%
�16.1% - 213.2(1)+21.4%

�16.1% -

�NLO 362.0(6)+13.7%
�11.4% 1.7 249.8(4)+3.9(+27)%

�6.0(�19)%
1.17

�NNLO 445(5)+6.7%
�7.0% 1.23 267(3)+1.8(+11)%

�2.5(�11)%
1.067

TABLE I. Fiducial cross sections for pp ! `
+
⌫bb̄ produc-

tion at the LHC with
p
s = 8 TeV at LO, NLO and NNLO

for both inclusive (inc) and exclusive (exc) final states. The
corresponding K factor is defined as K = �

N(n)LO
/�

N(n�1)LO
.

The statistical errors are shown for the central predictions.
Scale uncertainties for the exclusive predictions are provided
using both the standard 7-point scale variation and uncor-
related prescription of Ref. [47]. The latter is quoted inside
parentheses in the error estimates.

varied by a factor of 2 around HT, while satisfying the
1/2  µR/µF  2 constraint.

Based on the number of jets required in the final states,
we can define the following configurations for the NLO
and NNLO predictions:

• inclusive (inc): at least 2 b-jets;

• exclusive (exc): exactly 2 b-jets and no other jets.

Näıve scale variation of the exclusive prediction may lead
to an underestimation of the scale uncertainties [47].
Hence, for the exclusive configuration, we use also the
uncorrelated prescription of Ref. [47], in addition to the
7-point scale variation.

In Table I, we present numerical results for the fiducial
cross section for the inclusive and exclusive configurations
at di↵erent perturbative orders. As observed in the pre-
vious studies [9, 14], the NLO QCD corrections are large
in the case of the inclusive phase space. In our calcula-
tion this amounts to about 70% corrections. The jet veto
in the exclusive selection reduces the NLO QCD correc-
tions to a moderate 17%. A similar observation holds
at NNLO QCD, where we find a positive correction of
23% in the inclusive and 6.7% in the exclusive case. The
NNLO QCD corrections are smaller than the NLO QCD
corrections in both cases indicating perturbative conver-
gence. In that respect, by using the scale dependence
as the canonical way to estimate the uncertainties from
missing higher orders, we conclude that theoretical un-
certainty reduces with inclusion of higher order terms.
However, for the inclusive phase space, the NLO correc-
tions are significantly larger than the LO scale depen-
dence. The situation at NNLO QCD slightly improves,
but the corrections are still only barely covered by the
NLO scale band. For the exclusive case, the NLO cor-
rections are within the LO band, however the estimated
uncertainty from the 7-point scale variation is compara-
tively small, only 5%. The NNLO corrections here are
also smaller, but are well outside the NLO scale uncer-
tainty, indicating that the NLO scale dependence is un-

derestimated. This motivates the alternative prescrip-
tion of Ref. [47] to estimate theory uncertainties, taking
into account the jet veto e↵ect. The uncertainties result-
ing from this prescription are shown in the parentheses
and are significantly larger. The higher order corrections
fall well within the uncertainty bands, implying that this
method is more reliable, but also quite conservative.

The double virtual corrections, which have been in-
cluded only in the leading colour approximation, deserve
an additional comment. For the inclusive setup, we find
that the contribution of Eq. (4) to the cross section is
about 5%. In the exclusive case, the Born configurations
are una↵ected by the jet veto, but a fraction of the hard
radiative corrections are suppressed. This leads to an en-
hancement of the sensitivity to the double virtual matrix
element, which contributes ⇠ 10% of the fiducial cross
section in this case. The näıve expectation for the sub-
leading colour e↵ects is that they are about 10% of the
double virtual matrix element, implying that potential
corrections to the fiducial cross section would be about
1% (0.5%) for the exclusive (inclusive) case.

FIG. 1. The charged lepton’s transverse momentum distri-
bution. The upper panel shows the absolute predictions for
the inclusive and exclusive selection at di↵erent perturbative
orders. The middle panel shows the inclusive cross sections as
a ratio with respect to the central NLO prediction, with the
coloured bands indicating the 7-point scale variation. The
lower panel shows the same ratio for the exclusive configu-
ration. Here, the coloured bands correspond to the decorre-
lated scale variation, and the hashed bands to the standard
7-point variation. The vertical bars indicate the statistical
uncertainty.
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and the integration measure is:

Dd
ki =

d
d
ki

i⇡
d
2

e
"�E . (2.3)

Momenta are considered outgoing from the graphs and all the particles are on-shell, i.e. p
2
1 =
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Figure 1: The pentagon-box topology contributing to pp ! tt̄j. Black lines denote massless
particles and red double-lines denote massive particles.
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t}, where
dij = pi · pj . (2.4)

The minimal set of master integrals (MIs) is obtained by IBP reduction [39, 53], as implemented in
the software LiteRed [54, 55] and FiniteFlow [41]. We found a total number of 88 MIs which
are shown in Fig. 2 and 3.

The MIs ~I satisfy a system of differential equations in canonical form [37]:

d ~I(~x, ") = " dA(~x) ~I(~x, "), (2.5)

where d is the total differential with respect to the kinematic invariants, and the matrix A(~x) is a
linear combination of logarithms:

A(~x) =
X

ci log(wi(~x)). (2.6)

The ci are matrices of rational numbers, and the alphabet {wi(~x)} consists of algebraic functions of
the kinematic invariants ~x. We discuss the details of the canonical basis of MIs and the alphabet
structure in Sec. 3.

The systems of differential equations depends on a set of square roots which we define here for
later convenience:
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t ,
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t

(d12 + d23 + m2
t )

2
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– 3 –
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canonical form [Henn ’13] DE of 
88 master integrals

IBP reduction and reconstruction 
over finite fields: good basis leads to 

simple reconstruction

dLog alphabet of 71 letters

see also 1L pp!tt+j O(ε2) [SB, Becchetti, Chaubey, Marzucca]
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Figure 1: The pentagon-box topology contributing to pp ! tt̄j. Black lines denote massless
particles and red double-lines denote massive particles.
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t}, where
dij = pi · pj . (2.4)

The minimal set of master integrals (MIs) is obtained by IBP reduction [39, 56], as implemented in
the software LiteRed [57, 58] and FiniteFlow [41]. We found a total number of 88 MIs which
are shown in Fig. 2 and 3.

The MIs ~I satisfy a system of differential equations in canonical form [37]:

d ~I(~x, ") = " dA(~x) ~I(~x, "), (2.5)

where d is the total differential with respect to the kinematic invariants, and the matrix A(~x) is a
linear combination of logarithms:

A(~x) =
X

ci log(wi(~x)). (2.6)

The ci are matrices of rational numbers, and the alphabet {wi(~x)} consists of algebraic functions of
the kinematic invariants ~x. We discuss the details of the canonical basis of MIs and the alphabet
structure in Sec. 3.

The systems of differential equations depends on a set of square roots which we define here for
later convenience:
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Figure 1: The pentagon-box topology contributing to pp ! tt̄j. Black lines denote massless
particles and red double-lines denote massive particles.
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2
5 = 0. The kinematics of the integrals can be described in terms

of six independent invariants. Here we choose the top-quark mass mt and the five dot products,
~x = {d12, d23, d34, d45, d15,m2

t}, where
dij = pi · pj . (2.4)

The minimal set of master integrals (MIs) is obtained by IBP reduction [39, 56], as implemented in
the software LiteRed [57, 58] and FiniteFlow [41]. We found a total number of 88 MIs which
are shown in Fig. 2 and 3.

The MIs ~I satisfy a system of differential equations in canonical form [37]:

d ~I(~x, ") = " dA(~x) ~I(~x, "), (2.5)

where d is the total differential with respect to the kinematic invariants, and the matrix A(~x) is a
linear combination of logarithms:

A(~x) =
X

ci log(wi(~x)). (2.6)

The ci are matrices of rational numbers, and the alphabet {wi(~x)} consists of algebraic functions of
the kinematic invariants ~x. We discuss the details of the canonical basis of MIs and the alphabet
structure in Sec. 3.

The systems of differential equations depends on a set of square roots which we define here for
later convenience:

� =

s

�1 +
2d12

d12 + m2
t

,

�1 =
q

(d23 � d45)2 � 2d45m2
t ,
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numerical evaluation with generalised 
series expansions (DiffExp)

high precision boundary values 
(AMFlow)

additional rotations in sub-sectors. In our case this step was particularly simple and only involved
the treatment of 2 ⇥ 2 systems, yet it would be interesting to understand why this is necessary
in some cases so a better selection of candidates could be made. Interestingly, such problems did
not arise in any of the most complicated five-point topologies where the (extra-dimensional) local
numerator insertions worked well.

For the remainder of this section we present explicit forms for all integrals in the five-point
sectors. A complete list of the remaining UT integrals is given in Appendix A as well as in computer
readable form in the ancillary files.

3.1 Pentagon-box sector

The eight propagator pentagon-box sector shown in figure 4 contains three MIs. As the topology
with the maximal number of propagators it is particularly important to find a simple basis choice
in order to avoid technical complications with the size of the IBP system. In particular we find a
convenient choice of UT integrals with a lower tensor rank than in previous five-point bases which
simplified the analytic reconstruction.
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Figure 4: The pentagon-box sector with the master integrals I1 and I2.

In these massless and one-mass five-point planar cases [5, 10] a basis of canonical MIs was
obtained that involved the following integrals:

n
I1,1,1,1,1,1,1,1,�1,0,0, I

[11,22]
1,1,1,1,1,1,1,1,0,0,0 � I

[12,12]
1,1,1,1,1,1,1,1,0,0,0, I

[12]
1,1,1,1,1,1,1,1,0,0,0

o
. (3.5)

The local numerator µ11µ22 � µ
2
12, requires the reduction of rank 4 numerators which puts a con-

siderable strain on the system of IBP equations. We find that a different local numerator insertion
of rank 2,

I
[11]
1,1,1,1,1,1,1,1,0,0,0, (3.6)

also leads to a UT basis which allows for a simple analytic reconstruction. We also note that this
choice is also UT for the other five-point configurations mentioned above.

We then find that a canonical basis of MIs for this sector is:

I1 = ✏
4 8 d23 d45

�
d12 + m

2
t

�
I1,1,1,1,1,1,1,1,�1,0,0, (3.7)

I2 = ✏
4 d45

2 tr5
I
[11]
1,1,1,1,1,1,1,1,0,0,0,

I3 = ✏
4 d45

2 tr5
I
[12]
1,1,1,1,1,1,1,1,0,0,0 .

One should be aware that this simplification in the rank of the IBP system is only valid for the
differential equation system. Rank five numerators cannot, at least with the current technology, be
avoided in the reduction of the amplitude. However since the differential equation system requires
the reduction of many more dotted propagators than the amplitude, we may still avoid the need
for a system requiring simultaneous reduction of high ranks and multiple dots.
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Introduction Processes Computation Finite fields Reconstruction Performance Conclusion

Timing

Channel
f64/f64 Evaluation strategy

Time (s) f (%) Time (s) f (%)
gg ! ggg 1.39 69 1.89 77
gg ! q̄qg 1.35 91 1.37 91
qg ! qgg 1.34 92 1.57 93
qq̄ ! ggg 1.34 93 1.38 93
q̄Q ! Qq̄g 1.14 99 1.16 99
q̄Q̄ ! q̄Q̄g 1.36 99 1.39 99
q̄g ! q̄QQ̄ 1.36 99 1.39 99
q̄q ! QQ̄g 1.14 99 1.14 99
q̄g ! q̄qq̄ 1.84 99 1.90 99
q̄q̄ ! q̄q̄g 1.82 99 1.94 99
q̄q ! qq̄g 1.71 99 1.77 99
gg ! ��g ⇤ 9 99 26 99

Ryan Moodie (Turin) Two-loop five-point amplitudes in massless QCD with finite fields 14/17

from Ryan Moodie’s slides
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two-loop five-point processes in NJET

https://bitbucket.org/njet/njet



part 1I:
amplitude neural networks
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Figure 3: Differential distributions normalised to the cross section for the 2 ! 3 process
comparing NJet (red) with the NN ensemble (blue). The NJet results are quoted with MC
errors and the NN results with precision/optimality uncertainties calculated as described
in Ref. [60]. Pseudojets ji and photons �i are ordered by energy, �� is azimuthal sepa-
ration, R-separation is defined in Section 3.2.1, and m�1,�2 and �⌘�1,�2 are the mass and
pseudorapidity separation of the diphoton system.
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optimising simulations
The numerical evaluation requires the sum of permutations of ordered primitive am-

plitudes. This is completely automated for arbitrary multiplicity, but evaluation times and
numerical stability are increasingly difficult to control.

To study the growth of evaluation time with multiplicity, we evaluate the matrix ele-
ment at 100 random phase-space points with each available technique and plot the mean
times in Figure 1. We generate the phase-space points isotropically with the algorithm
from Ref. [67]. While analytic methods are competitive at low multiplicity, we see they
scale poorly and are unlikely to beat numerics at n � 6. Numeric scaling is better, but
these algorithms come with a high cost. Our NN approach provides a performant alterna-
tive, with significantly better scaling than either numerics or analytics.

4 5 6

Multiplicity
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E
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lu
at

io
n

ti
m

e
(m

s)

Numerical

Analytical
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Figure 1: Matrix element typical CPU evaluation times for available methods — including
NJet numerical evaluations, NJet analytical evaluations, and inference on a NN ensemble
as described in Section 3 — against the number of legs. These calls are single-threaded as
parallelisation is applied at the level of events in simulations. An analytic expression for
2 ! 4 is not available. The NN is comparable to the analytic call at 2 ! 2, 50 times faster
at 2 ! 3, then 105 times faster than the 2 ! 4 numeric call.

3 Computational setup

In this paper, we build on previous work which sought to demonstrate the viability of using
NN-based approaches to approximate matrix element values for hard scattering processes
[60]. In that work, a NN ensemble approach was presented in which a different NN is
trained on each soft and collinear region of phase space, and was shown to be effective in
handling IR divergent structures at both the Born and one-loop level at high multiplicity
in e

+
e
� collisions. We extend this to more complex 2 ! 3 and 2 ! 4 gluon-initiated

diphoton amplitudes, while also showing the ability for these ML models to interface with
existing event generators such as Sherpa [6, 7]. This is important to demonstrate since it is
not immediately obvious that NN approximations trained in isolation will be robust to the
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Figure 2: NN/NJet errors for the 2 ! 3 scattering process using a unit integration grid.

Cuts NJet [pb] NN ensemble [pb]
Baseline 4.149 ⇥ 10�6

± 6 ⇥ 10�9 4.19 ⇥ 10�6
± 7 ⇥ 10�8

Baseline + pT,� > 50 GeV 5.283 ⇥ 10�7
± 8 ⇥ 10�10 5.4 ⇥ 10�7

± 2 ⇥ 10�8

Baseline + m�,� > 50 GeV 3.300 ⇥ 10�6
± 5 ⇥ 10�9 3.34 ⇥ 10�6

± 5 ⇥ 10�8

Table 1: Cross-sectional comparison between NJet and the NN ensemble approach using
different cuts. Baseline cuts are those specified at the beginning of Section 4. The NJet re-
sults are quoted with MC errors and the NN ensemble results with precision/optimality
uncertainties calculated as described in Ref. [60].

shows the results of the cross section derived using NJet and the NN ensemble. We see
that these two approaches are in excellent agreement, with the ensemble result overlapping
within one standard deviation of that calculated by NJet. The errors on the NJet values
are the MC errors, and the errors on the ensemble are precision/optimality uncertainties.
The latter are calculated by training multiple ensembles with different random seeds in
the weight initialisation, and in the shuffling of the training and validation datasets. MC
errors are quoted to one standard deviation and the precision/optimality uncertainties to
one standard error on the mean. A more in depth description of this uncertainty analysis
can be found in Section 2.3 of Ref. [60].

The error plot and cross-section calculation provide good evidence for the performance
of the NN ensemble method both in its ability to learn the distribution of phase-space
points on average, as well as its robustness to being integrated into a wider event generation
framework with additional phase-space and PDF weights. To further test the methodology
in a more relevant way to how it would be used in practice, differential distributions can
be used to assess robustness as they more explicitly expose performance on the divergent
and tail events.
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how can we speed up simulations 
with expensive amplitude calls?

SB, (Aylett-)Bullock [2002.07516]

Figure 2. Error distribution compared to Figure 3 in Ref. [27], where data to reproduce the
histograms were provided by the authors. We plot the log ratio of the matrix element as predicted
by the neural network ensemble and the value from NJet on the main axes for comparison. The
blue and orange dipole histograms representing our method are cut off at the top on the main axes,
but the most important feature is the narrowness of the peak centred around the ideal value. The
insets show the detailed distribution of our result on a linear scale.

We can see that the prediction-to-truth ratio distribution for our method is much narrower
and consistently peaked around the ideal accuracy, indicating our model performs better
on a per-point basis for all multiplicities. Even with this reduced NN size we can see that
incorporating the known divergent structure explicitly in the model gives better results, as
it uses the NN representation to learn a function that is more suitably approximated by a
NN. For example, even though the three jet matrix element has a fairly trivial analytical
structure, a standard fitting approach using a NN typically struggles to reproduce diver-
gences. In our approach the NN only needs to emulate a non-singular modulation on top
of the main divergent behaviour and is therefore more suited to the task.

3.2 Main results

Here we present our main results which are obtained using the larger NNs described in
Section 2.4.2 along with larger training datasets described in Section 2.3. In Figure 3, we
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Maitre, Truong [2107.06625]

factorisation aware approach 
looks to be working nicely!

other talks and new 
results!

Bothmann,  Butter, 
Truong, Janssen 

huge potential!

• Single NN does badly
• Understanding IR sectors via FKS improves reliablity 

(ensemble of networks)
• Error estimates by varying model initialisation
• Various tests suggest single run speed improvements at least x10

Aylett-Bullock, SB, Moodie [2106.09474]
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Bayesian Networks

another experiment with
loop amplitudes

[See talk by Butter]

gg!""g, gg!""gg @(1L)^2
• better defined error estimates
• improved training via loss and 

performance boosting

SciPost Physics Submission

Bayesian networks and uncertainties

In contrast to standard, deterministic networks, Bayesian neural networks (BNNs) learn dis-
tributions of network parameters or weights! [9,18]. Sampling over the weight distributions
gives us an uncertainty in the network output. At the end of this introduction we will ap-
proximate each weight distribution by a Gaussian, which does not limit the expressivity of a
deep Bayesian network, but means that the Bayesian network requires only twice as many pa-
rameters as its deterministic counterpart [9]. By definition, the Bayesian network includes a
generalized dropout and an explicit regularization term in the loss, which stabilize the training.

With our amplitude network we want to predict the transition amplitude A for a phase
space point x . If we define p(A|x)⌘ p(A) as the probability distribution for possible amplitudes
at a given phase space point x , and omitting the argument x from now on, its mean value is

hAi=
Z

dA A p(A) with p(A) =
Z

d! p(A|!) p(!|T ) , (4)

where p(!|T ) are the network weight distribution and T is the training data. We do not know
the closed form of p(!|T ), but we can approximate it with a simpler tractable distribution
q(!):

p(A) =
Z

d! p(A|!) p(!|T )⇡
Z

d! p(A|!) q(!) . (5)

This approximation leads us directly to the BNN loss function. We implement the variational
approximation as a Kullback-Leibler divergence,

KL[q(!), p(!|T )] =
Z

d! q(!) log
q(!)

p(!|T )

=
Z

d! q(!) log
q(!)p(T )

p(!)p(T |!)

= KL[q(!), p(!)]�
Z

d! q(!) log p(T |!) + log p(T )
Z

d! q(!) . (6)

Bayes’ theorem gives the corresponding networks their name. The prior p(!) describes the
model parameters before training. The model evidence p(T ) guarantees the correct normal-
ization of p(!|T ). Turning Eq.(6) into a loss function we can omit the evidence, if we enforce

�A� = 1
N

N

�
i

A(�i)

�2pred = 1
N

N

�
i

(�A� � A(�i))2

BNN

sa
m
p
lin
g

�2model=
1
N

N

�
i

�2model(�i)

Output

output

( A(�1)
�model(�1))

Ensemble of networks

0.2 0.8

-0.1

-0.3

0.70.5

0.9

-0.2
0.4

q(�)

x

x

x

x

( A(�2)
�model(�2))

( A(�3)
�model(�3))

Figure 1: Illustration of the Bayesian network.
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Figure 9: Performance of the BBN for all amplitudes (left) and a performance-boosted
BNN for the largest 1% of all amplitudes (right), after training on different fractions
of the full training dataset.

4.3 Effect of training statistics

Given that our amplitude-BNN has successfully learned the amplitudes for the partonic process
g g ! ��g well below the percent level, with a small and simple network and 90k training
points, we can ask the question how much training data we actually need for a precision
amplitude network. For this study we use the same BNN as before, including loss-boosting
and performance-boosting, but trained on a reduced dataset of

10% (9.000 amplitudes) · · · 100% (90.000 amplitudes) . (20)

In Fig. 9 we show the corresponding�-distributions for the test dataset. Our smallest training
dataset contains 9000 amplitudes, which turn out sufficient to train our network with its 6192
parameters. The corresponding network reproduces the test data well, albeit with sizeable
overflow bins. Increasing the amount of training data improves the precision of the network,
but relatively slowly. We observe the same level of improvement for all amplitudes and for the
1% largest amplitudes. For the latter we only show results after process boosting, without any
boosting the quality of the low-statistics training is comparably poor.

5 Kinematic distributions

After illustrating the performance of the amplitude network in a somewhat abstract manner,
we can also show 1-dimensional kinematic distributions. The integration of the remaining
phase space dimension requires a little care, because we cannot just integrate the uncertainties
together with the central values for the amplitudes.

For the central values we combine the amplitudes with phase space sampling. For example
applying the simple RAMBO [21] algorithm we identify the phase space weights with A. A 1-
dimensional distribution is generated through bins which collect the sum of the amplitudes in
the remaining phase space directions. The histogram value for a bin k is

hk =
NX

j=1

Aj . (21)

To use the amplitudes predicted by the BNN we have to add the sampling over the weights
!. By replacing the truth amplitudes with the NN-amplitudes we can target the uncertainties
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outlook

• new theory techniques are essential to meet the 
precision requirements at the LHC

• finite field arithmetic is making a dent in 
the 2L 2!3 wishlist

• some progress for amplitudes with internal 
masses (ttj)

• amplitudes neural networks look to be a 
promising way to significantly optimise MC 

simulations


