
October 27, 2022
ACAT 2022

Enrico Guiraud
ROOT team, EP-SFT, CERN

Simpler, faster and bigger
HEP analysis in the LHC Run 3 era

Motivation, context

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
3

Why we care
CPU time

CMS ATLAS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
4

Why we care
CPU time PhD student time

CMS ATLAS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
5

Why we care
CPU time

● All analysis software becomes 2x faster -> 2x jobs on the same resources

● One analysis becomes 10x (or 1000x) faster -> new explorations possible

Conversely: if your analysis had to process 10x data today, would you be ok?

CMS ATLAS

PhD student time

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
6

The Triforce of analysis frameworks

● Ergonomics: onboarding, docs, debugging (correctness and bottlenecks),
extensibility, prototyping, making simple things simple, difficult things possible.

● Performance: best possible throughput and hardware utilization out of the box.
● Sustainability: validation, stability, user support, bug fixes – over years (decades?).

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
7

The Triforce of analysis frameworks

Choice of programming language(s) is important for all three aspects.

● Ergonomics: onboarding, docs, debugging (correctness and bottlenecks),
extensibility, prototyping, making simple things simple, difficult things possible.

● Performance: best possible throughput and hardware utilization out of the box.
● Sustainability: validation, stability, user support, bug fixes – over years (decades?).

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
8

The Triforce of analysis frameworks

Choice of programming language(s) is important for all three aspects.

End users will mostly care about ergonomics (see also N. Smith),
service managers and experiment coordination value performance and sustainability.

● Ergonomics: onboarding, docs, debugging (correctness and bottlenecks),
extensibility, prototyping, making simple things simple, difficult things possible.

● Performance: best possible throughput and hardware utilization out of the box.
● Sustainability: validation, stability, user support, bug fixes – over years (decades?).

https://indico.cern.ch/event/1125222/contributions/4840282/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
9

The Triforce of analysis frameworks

Choice of programming language(s) is important for all three aspects.

End users will mostly care about ergonomics (see also N. Smith),
service managers and experiment coordination value performance and sustainability.

● Ergonomics: onboarding, docs, debugging (correctness and bottlenecks),
extensibility, prototyping, making simple things simple, difficult things possible.

● Performance: best possible throughput and hardware utilization out of the box.
● Sustainability: validation, stability, user support, bug fixes – over years (decades?).

https://indico.cern.ch/event/1125222/contributions/4840282/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
10

The analysis pipeline

Centralized tools, centralized processing:
ok to build software cathedrals

Large variety of requirements, lots of
innovation, being agile is an advantage:
naturally a bazaar (but sustainability!)

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Large variety of requirements, lots of
innovation, being agile is an advantage:
naturally a bazaar (but sustainability!)

Centralized tools, centralized processing:
ok to build software cathedrals

11

The analysis pipeline

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Large variety of requirements, lots of
innovation, being agile is an advantage:
naturally a bazaar (but sustainability!)

Centralized tools, centralized processing:
ok to build software cathedrals

12

The analysis pipeline

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
13

The analysis pipeline

● data (ROOT – ideally with a simple schema)
● statistical models (common JSON schema)
● ML models (ONNX)
● complex histograms, complex large visualizations?

It’s good to have common protocols to share results and artifacts

Centralized tools, centralized processing:
ok to build software cathedrals

Large variety of requirements, lots of
innovation, being agile is an advantage:
naturally a bazaar (but sustainability!)

https://gitlab.cern.ch/cburgard/hep-statistics-serialization-standard
https://onnx.ai/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
14

Making our own tools still makes sense

● hierarchical data model (event -> object -> property)
● working with collections of physics objects – efficiently
● dealing with systematic variations – efficiently
● histograms as the most common data aggregation
● …

Reason 1: specializing for HEP needs

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
15

Making our own tools still makes sense
Reason 1: specializing for HEP needs

● hierarchical data model (event -> object -> property)
● working with collections of physics objects – efficiently
● dealing with systematic variations – efficiently
● histograms as the most common data aggregation
● …

As an example, Jim Pivarski’s
Awkward Arrays make

jaggedness (a HEP feature)
pythonic (now fits in the bazaar)

https://github.com/scikit-hep/awkward

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
16

Making our own tools still makes sense
Reason 1: specializing for HEP needs

…and HEP was not the only field missing them!
As an example, Jim Pivarski’s

Awkward Arrays make
jaggedness (a HEP feature)

pythonic (now fits in the bazaar)

● hierarchical data model (event -> object -> property)
● working with collections of physics objects – efficiently
● dealing with systematic variations – efficiently
● histograms as the most common data aggregation
● …

https://github.com/scikit-hep/awkward

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
17

Making our own tools still makes sense
Reason 2: performance optimization

● for our I/O use cases (J Lopez, J Blomer)
● for our type of queries (D Graur, I Müller, M Proffitt et al)

https://arxiv.org/abs/2204.09043
https://arxiv.org/abs/2104.12615

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
18

Making our own tools still makes sense
Reason 2: performance optimization

● for our I/O use cases (J Lopez, J Blomer)
● for our type of queries (D Graur, I Müller, M Proffitt et al)

https://arxiv.org/abs/2204.09043
https://arxiv.org/abs/2104.12615

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
19

Making our own tools still makes sense

● for our I/O use cases (J Lopez, J Blomer)
● for our type of queries (D Graur, I Müller, M Proffitt et al)

Reason 2: performance optimization

“[...] the general-purpose data
processing systems are significantly
less performant than the
domain-specific ROOT framework
— due to limited scalability and
inefficient handling of the data and
queries relevant to HEP.”

https://arxiv.org/abs/2204.09043
https://arxiv.org/abs/2104.12615

Rise of the
middleman analysis software

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
21

The middleman analysis software

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
22

The middleman analysis software

Not a new concept (TTree::Draw, PROOF), but:

● current ecosystem supercharges what we can do: Python, dask or TBB
schedulers, reproducible environments (e.g. conda), containerization

● we need it more than ever: hardware is more complicated (GPUs, NUMA,
many-core), analysis pipelines are more complicated, performance is critical

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
23

Giving up the event loop

Now out of users’ hands, taken care of
by tools such as RDataFrame, Coffea,

ServiceX, bamboo, CutLang, O2.

Responsibilities are moving upstream, from users’ code or specialized
frameworks to a more generic middleman layer.

https://indico.cern.ch/event/1106990/contributions/4998129/
https://github.com/CoffeaTeam/coffea
https://servicex.readthedocs.io/en/latest/
https://gitlab.cern.ch/cp3-cms/bamboo
https://indico.cern.ch/event/1106990/contributions/4991306/
https://alice-o2-project.web.cern.ch/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
24

Giving up the event loop

This has a consequence on debugging experience.

How do we let users debug their logic without
having to deal with the middleman layer?

Now out of users’ hands, taken care of
by tools such as RDataFrame, Coffea,

ServiceX, bamboo, CutLang, O2.

Responsibilities are moving upstream, from users’ code or specialized
frameworks to a more generic middleman layer.

https://indico.cern.ch/event/1106990/contributions/4998129/
https://github.com/CoffeaTeam/coffea
https://servicex.readthedocs.io/en/latest/
https://gitlab.cern.ch/cp3-cms/bamboo
https://indico.cern.ch/event/1106990/contributions/4991306/
https://alice-o2-project.web.cern.ch/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
25

What the middleman can do for you (1)

FuncADL+ServiceX

● find xAOD file via catalog
● spin up ATLAS fwk container
● return selection result
● cache query result
● hides compute/storage load:

educate users to avoid abuse

https://github.com/iris-hep/func_adl_servicex

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
26

What the middleman can do for you (2)

ROOT.RDataFrame
● transparent multi-threading
● simple systematics
● seamless scale-out

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
27

What the middleman can do for you (3)

● enhanced reproducibility on changing hardware and infrastructure
● transparent caching into object stores (V Padulano et al)
● simpler comparison of different analyses
● GPU offloading (e.g. of ML inference)
● transparent caching of ML inference results?
● automated analysis preservation?
● …?

Advantages beyond ergonomics and performance

https://link.springer.com/article/10.1007/s10586-022-03757-2

A few
recurring implementation details

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
29

Two levels of computation graphs
At the analysis logic level (awkward+dask, RDF, bamboo, Gandiva (O2)), and at the

analysis workflow level (Snakemake, Luigi, law).

A programmatic handle on the operations to perform and their dependencies:
good for workflow optimization, caching, potentially auto-differentiation.

D Noll

RDF.SaveGraph

https://gitlab.cern.ch/cp3-cms/bamboo
https://wjones127.github.io/samples/pyarrow-gandiva-docs-v3/python/gandiva.html
https://github.com/AliceO2Group/AliceO2
https://snakemake.readthedocs.io/en/stable/
https://github.com/spotify/luigi
https://github.com/riga/law
https://indico.cern.ch/event/1193815/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
30

Event-wise, bulk-wise logic

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
31

Event-wise, bulk-wise logic

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
32

Event-wise, bulk-wise logic

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
33

Event-wise, bulk-wise logic

● think vector operations on Numpy arrays vs for loops on C++ vectors
● bulk-wise required in pure Python for performance, with per-bulk operations
● handling multiple events is sometimes cumbersome

-> Numba functions can be used to go back to explicit for loops
● can be useful in C++ interfaces in some cases e.g. to enable GPU offloading

https://numba.pydata.org/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
34

Event-wise, bulk-wise logic

● think vector operations on Numpy arrays vs for loops on C++ vectors
● bulk-wise required in pure Python for performance, with per-bulk operations
● handling multiple events is sometimes cumbersome

-> Numba functions can be used to go back to explicit for loops
● can be useful in C++ interfaces in some cases e.g. to enable GPU offloading

Bulk-wise APIs do not automatically imply better CPU vectorization, because of
event/object masks introducing branching: an interesting optimization opportunity?

https://numba.pydata.org/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
35

Efficient object collections

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
36

Efficient object collections

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
37

Efficient object collections

Exposing objects to analysts can be more easily decoupled from I/O operations.
This reduces the amount of data read dramatically.

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
38

Efficient object collections

Exposing objects to analysts can be more easily decoupled from I/O operations.
This reduces the amount of data read dramatically.

Proxies in Coffea (bulk-wise) Proxies in bamboo (event-wise)

from the bamboo ADL benchmarksfrom the Coffea ADL benchmarks

https://github.com/pieterdavid/bamboo-adl-benchmarks
https://github.com/CoffeaTeam/coffea-benchmarks

Building analysis facilities for the bazaar

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
40

What do you mean “analysis facility”?
To work out you go to the gym, to build cool things you go to a makerspace,

to work on your analysis you connect to an analysis facility (AF).

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
41

What do you mean “analysis facility”?

Things that an AF manager and a gym coach can both say

● “Let me show you how to use that machine”
● “Here’s a simple program to get you started”
● “I think you are loading the wrong weights”

To work out you go to the gym, to build cool things you go to a makerspace,
to work on your analysis you connect to an analysis facility (AF).

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
42

What do you mean “analysis facility”?
To work out you go to the gym, to build cool things you go to a makerspace,

to work on your analysis you connect to an analysis facility (AF).

Common building blocks

● containerization (Docker/Singularity, Kubernetes)
● dask as a scheduler, often in tandem with HTCondor/SLURM
● JupyterLab as frontend (SSH access also allowed)
● high-bandwidth connection to storage
● dedicated resources vs “parasitic” usage of existing ones?

To an extent, LXBATCH is a an AF, but we can make things more comfortable.

See also the Second Analysis Ecosystem Workshop Report.

https://zenodo.org/record/7003963

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
43

What the analysis facility can do for you
● simplify experiment authentication and data access
● smart scheduling to guarantee less cache thrashing
● monitoring:

○ feedback to users (“you have throughput 100x lower than the median”)
○ feedback to developers (“latency too high for remote data fetching”)

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
44

What the analysis facility can do for you
● simplify experiment authentication and data access
● smart scheduling to guarantee less cache thrashing
● monitoring:

○ feedback to users (“you have throughput 100x lower than the median”)
○ feedback to developers (“latency too high for remote data fetching”)

D Duellmann, B Panzer-Steindel et al

https://zenodo.org/record/6337728

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
45

Analysis facilities for the bazaar

Optimize for common patterns and behaviors, not for specific software stacks.

Build monitoring so that users and admins can compare solutions.

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
46

Analysis facilities for the bazaar

ALICE AFs already have this concept (test runs on 10% data before full runs).

Example: built-in semantic distinction between

● quick exploration: low latency (interactive), small data, can use small, fast caches
● full analysis: high throughput on big data, higher latency is ok, might benefit from

train-like scheduling to use larger caches well

Optimize for common patterns and behaviors, not for specific software stacks.

Build monitoring so that users and admins can compare solutions.

Conclusions

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Some of the current challenges

48

Do not forget extensibility and debugging experience.

1. Flexibility: hide complexity without losing flexibility, e.g by
- design customization points, or
- let users move to the lower layer (GUI -> YAML -> Python –> C++)

We are not done, of course. We are learning how to do better in several areas:

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Some of the current challenges

49

Do not forget extensibility and debugging experience.

1. Flexibility: hide complexity without losing flexibility, e.g by
- design customization points, or
- let users move to the lower layer (GUI -> YAML -> Python –> C++)

2. Debugging: let users debug logical and performance issues in the tip of
the iceberg without having to understand the full iceberg

We are not done, of course. We are learning how to do better in several areas:

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Some of the current challenges

50

Do not forget extensibility and debugging experience.

1. Flexibility: hide complexity without losing flexibility, e.g by
- design customization points, or
- let users move to the lower layer (GUI -> YAML -> Python –> C++)

2. Debugging: let users debug logical and performance issues in the tip of
the iceberg without having to understand the full iceberg

3. Caching: smart caching required to meet performance goals; requires
collaboration between analysis, schedulers, facilities

We are not done, of course. We are learning how to do better in several areas:

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Some of the current challenges

51

Do not forget extensibility and debugging experience.

1. Flexibility: hide complexity without losing flexibility, e.g by
- design customization points, or
- let users move to the lower layer (GUI -> YAML -> Python –> C++)

2. Debugging: let users debug logical and performance issues in the tip of
the iceberg without having to understand the full iceberg

3. Caching: smart caching required to meet performance goals; requires
collaboration between analysis, schedulers, facilities

4. Derived datasets: prevent blow-up, e.g. by making it simple to join
analysis-specific observables with centrally-produced datasets

We are not done, of course. We are learning how to do better in several areas:

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Some of the current challenges

52

Do not forget extensibility and debugging experience.

1. Flexibility: hide complexity without losing flexibility, e.g by
- design customization points, or
- let users move to the lower layer (GUI -> YAML -> Python –> C++)

2. Debugging: let users debug logical and performance issues in the tip of
the iceberg without having to understand the full iceberg

3. Caching: smart caching required to meet performance goals; requires
collaboration between analysis, schedulers, facilities

4. Derived datasets: prevent blow-up, e.g. by making it simple to join
analysis-specific observables with centrally-produced datasets

5. Heterogeneous computing: offload appropriate computations to GPUs

We are not done, of course. We are learning how to do better in several areas:

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Analysis is getting simpler and faster

53

The HEP analysis software ecosystem is healthy and evolving at a fast pace
with a good mix of R&D and production-grade developments.

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Analysis is getting simpler and faster

54

The HEP analysis software ecosystem is healthy and evolving at a fast pace
with a good mix of R&D and production-grade developments.

The LHC Run 3 era will benefit from a new generation of analysis tools that focus on
gathering semantic information about the analysis (input, environment, code, …)

and HEP-specific concepts (systematics, physics objects, …).

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Analysis is getting simpler and faster

55

The HEP analysis software ecosystem is healthy and evolving at a fast pace
with a good mix of R&D and production-grade developments.

The LHC Run 3 era will benefit from a new generation of analysis tools that focus on
gathering semantic information about the analysis (input, environment, code, …)

and HEP-specific concepts (systematics, physics objects, …).

Backup

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Things with disruptive potential
Things that may disrupt the ecosystem if they gain traction (10-year scale):

● julia: C++ perf., Python ergonomics, but low adoption, large migration effort
● end-to-end automatic differentiation: advantages still unclear, would require

the collaboration of large parts of the analysis software stack

What about GPUs?
GPUs, TPUs and similar accelerators can speed up parts of the analysis pipeline
(ML training/inference, PDF evaluation, maybe appropriate parts of the data
processing), and they can fit in the existing paradigms.

What about quantum computers?
Similar to GPUs: quantum computers are the “ultimate accelerators” but also
extremely specialized, large input datasets might be problematic.

57

https://indico.cern.ch/event/1125222/contributions/4886026/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022

Is your analysis “fast”?
There are legitimate use cases where a throughput of O(10) evts/s is optimal.

However, here are some examples of what is possible today
(and things are only getting better):

58
RNTuple and other advancements should provide another factor N speed-up (1<N<10).

● “turnaround of a few hours for [...] thousands of histograms of the CMS Run 2
data on a batch system”, P David

● 3.2B events, O(1000) systematics, 70 5-dim histograms in 45 minutes (SSD
storage, 128 threads) J Bendavid

● NanoAOD events processed at 400 kHz when producing ~6k histograms (SSD
storage, 128 threads), E Manca, E Guiraud

● Events processed at ~20 kHz/core when running the Analysis Grand Challenge
on a Coffea-casa analysis facility (network read, 400 cores), A Held, O Shadura

https://indico.cern.ch/event/948465/contributions/4324161/
https://indico.cern.ch/event/855454/contributions/4625785/
https://indico.cern.ch/event/849610/
https://indico.cern.ch/event/1106990/contributions/4998188/

E. Guiraud, HEP analysis in the LHC Run 3 Era, ACAT 2022
59

Performance targets

Throughput required: A. ~3 GB/s/node or B. ~100 MB/s/core for read+processing.

● need hardware setup that can sustain such throughput
● cannot afford reading more than what’s strictly needed
● must make good use of the hierarchy of storage options

○ remote
○ large shared storage at the level of the computing facility

(xcache, high-bandwidth object stores)
○ small user-level storage

 1 PB of (compressed) data, of which 100 TB are actually read by the analysis.
We expect the analysis will be able to run in A. 10 minutes on a cluster of 64 nodes,

or B. 4 hours on a single beefy machine with 128 cores.

