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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.*
Be D a set of data, and R a stat. hyp. for their distribution
Does R provide the right description of D ?

*often question emerges after optimising distribution free parameters on the
data, as a way to assess fit quality. But the problem is more general
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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.
Be D a set of data, and R a stat. hyp. for their distribution
Does R provide the right description of D ?

Answering is more easy the more restrictive assumptions
we make on how the true distribution, if not R, can look like

But, more partial as well.

Hy

Simple vs Simple .H1 R Simple vs
hypothesis test . Composite test

« Optimal approach provided by * No Optimal solution. But,

Neyman-Pearson Lemma Likelihood Ratio is Good solution
- Optimal answer to very specific * Answers a more general question:
question: test has no or very some power If truth is in Hw.

limited power if truth # Hj Generically, larger Hw = less power



The LHC g.o.f. challenge

By analysing the LHC data, we would like to find evidence
of failure of the SM theory, suggesting need of BSM.

This iIs a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over « many we can measure



The LHC g.o.f. challenge

By analysing the LHC data, we would like to find evidence
of failure of the SM theory, suggesting need of BSM.

This iIs a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over « many we can measure

Model-dependent .H1 R Model-independent HW

BSM searches . searches

- Optimise sensitivity to one « Could reveal truly unexpected
specific BSM model new physical laws.

- Fail to discover other models. * No hopes to find Optimal strategy.
What if the right theoretical For a Good strategy, we need a

model is not yet formulated? good choice of Hw.



New Physics Learning Machine (NPLM)

4 B
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Data: D ={x;},i=1,...,Np
l.i.d. measurements of, e.g., reconstructed
particle momenta in a region of interest

n(x|w

s n(x) = N P(x) A
N = [dxn(x)

n(z|w) = n(z|R) e/ @W)
f(z;w) is a neural network, or other flexible

functional approximant with good properties
TL(CC ‘ R) in many dimensions, like kernels

Strategy is to evaluate the classical Likelihood Ratio test statistic

max|L(Hw |D)]

t(D) = 2 log — = 2 max

L(R|D)

W

—N(w) Np
log o—N(R) H

by supervised training Data vs Reference (baokground) sample.
Reference = artificial data distributed as predicted by the SM

By using a special loss function:

LA = 3 |- ) @~ 1) -y (o) (D) =—2Min L[S, W)

(z,y)

1w}




INPUT

Reference sample (R)
label=0

Data sample (D)
label=1

Unbinned training samples!

BSM network
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H(D) = — 2L [f(x; W)]
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n(x|Ry) ]
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Many trainings
(with pseudo-data)

Empirical distribution of t

— p-value for new datasets

P(t) |
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lllustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis
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Distribution of “t” in one New Physics Model Hypothesis
t > p = Z-score weuse Z = d7 (1 - p))
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lllustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

0.10l 4 Neurons |
: P(t|R) Peak in the Tail |
0.08} No cut
= 0.06}
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Notice agreement with Wilks’
Formula:

Sufficiently regularised networks found
to behave as if their number of d.o.f.
was equal to number of parameters.

Theoretical reason mysterious

Distribution of “t” in one New Physics Model Hypothesis

t =& p = Z-score weuse Z = ®~!(1 — p))
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n(x)

lllustrating Performances
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(Simple 1d example with exponential Reference)
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“ldeal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP1 model)
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n(x)

lllustrating Performances
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(Simple 1d example with exponential Reference)
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“ldeal Z-score”: Zig

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP2 model)
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n(x)

lllustrating Performances

(Simple 1d example with exponential Reference)
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“ldeal Z-score”: Zgq

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)
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lllustrating Performances

(Simple 1d example with exponential Reference)

 Peak in the Bulk, 4 Neurons
' No cut

NP3: Peak in the Bulk

[ Median NN

Correlation between how much tension we see, and

how much there is to see. Weakly depend on NP nature

“ldeal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)

17



Imperfect Machine

Reference Sample is an imperfect representation of SM
e.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

R Central-Value Reference:
O Nuisance set to their C-V

n(z|Hwo) = e/ @Vn(z|R,)

max [L(Hw |D) - L(v]A)]

Strategy conceptually unchanged. ¢(D,.A) =2 log v;nl;x LR, D) - L(v]A)]

B L(Hwo,|D) L(v]A) L(R,|D) Lw]A] B
= 2 maxlog | =R D) 'L(O|A)]Qmﬁ‘XlOg[ﬁ(Rom)'L(mA) =7(D,A4) - AD,A)

Implementation slightly more complex
18



Imperfect Machine

-
New Physics Learning Machine (NPLM)

Including systematic uncertainties

fw)

~
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Reference sample Data sample A TE
R D v(A)
Pre-trained networks
BSM network r layer

eeR
Trainable parameters: v, W
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Gaia Grosso

Courtesy of Gaia Grosso
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An Imperfect Machine at Work

(Simple 1d example with exponential Reference)

Tau distribution distorted by non-central value nuisance
If not corrected, produces false positives
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t = Tau-Delta independent of true nuisance value

this is essential for a feasible test
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Towards LHC
Our proposed strategy is fully defined, including:

® Hyperparameters and regularisation selection
e Systematic approach to Reference mis-modelling

Validated on problems of realistic scale of complexity:
e 2-body final state with uncertainties (5D)
o [+MET “SUSY” (8D)
® Heavy Higgs to WWbb (21D)
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Towards LHC
Our proposed strategy is fully defined, including:

® Hyperparameters and regularisation selection
e Systematic approach to Reference mis-modelling

Validated on problems of realistic scale of compIeX|ty

e 2-body final state with uncertainties (5D)

o [+MET “SUSY” (8D) w1

e Heavy Higgs to WWbb (21D) r=tanr | T
Results in summary: R e

® model-selection strategy converges eotone |

® sensitivity to resonant or non-resonant NP mffk 3

® “uniform” response to NP of different nature P .

e trained network reconstruct NP e

- 7(D, A)=463.7, A(D, A)=247.15, t(D, A)=216.55, Z=6.56 |
®

1050 = [ DATA 000 TRECO
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S 10} eg e,
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. 121 *eqeyyutoys -.} -i-I i i i
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Outlook

Next step is implementation with true LHC data.

Open theoretical questions

e \Why exactly we get chi-squared distributed “t”?
® Regularisation selects space of alternatives, where we are looking for NP

A principled approach to regularisation and “reasonable” alternatives?
° .
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Outlook

Next step is implementation with true LHC data.

Open theoretical questions

e \Why exactly we get chi-squared distributed “t”?
® Regularisation selects space of alternatives, where we are looking for NP

A principled approach to regularisation and “reasonable” alternatives?
®

Model-Independent search algorithms also good for:

® Comparison between Monte Carlo Generators
e Data Validation/DQM
® Other GoF problems

24



First Real-Life Application?

[Grosso, Lai, Letizia, Pazzini, Rando, Wulzer, Zanetti, to appear]

nD DOQM

Online monitoring of a DT chamber:

Setup (Legnaro INFN national laboratory):

® 2 scintillators as signal trigger

® 1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
® Source of signals: cosmic muons (triggered rate ~3 MHz)

e Event: muon track reconstructed interpolating 3/4 hits (one per
layer)

Observables (6D problem):

Layer 1

e 4 drift times [tdrift, 1» tdrift, 2 tdrift, 35 tdrift, 4]: time for the ionised Layer 2
electrons to reach the wire from the interaction point Layer 3
(vdrift = Cm/S) . Layer 4

e 0: reconstructed track angle Sketch of a single

. . . . chamber
e N, average number of hits per time window (“orbit”)
:"“’ = = 7;‘”7 I
Dipartimento = 3
di Fisica . ! fe— —/— 2om —f—] ([;}ill)lodc
%Qﬁgg?ﬁlg UniGe ‘ n@ag.%a Imchronrc)im lines Muon i

UNIVERSITA DEGLI STUDI DI PADOVA

August 23, 2022 11 Gaia Grosso
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First Real-Life Application?

nD DOQM

Online monitoring of a DT chamber:

Setup (Legnaro INFN national laboratory):

[Grosso, Lai, Letizia, Pazzini, Rando, Wulzer, Zanetti, to appear]

Dipartimento
di Fisica

e Astronomia
Galileo Galilei

2 scintillators as signal trigger
1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
Source of signals: cosmic muons (triggered rate ~3 MHz)

Event: muon track reconstructed interpolating 3/4 hits (one per
layer)

Observables (6D problem):

o 4 drift times [Zy¢, 1> Lgrife, 25 Larift,
electrons to reach the wire fror

S

nD DOQM

Online monitoring of a DT chamber:

THRESHOLDS ANOMALIES
(vdrlft = Cl’n/S) . 4_x10'3: x1o—3:E
o 6 reconstructed track angle ® Reference sample: long run in optimal conditions N ; : 3
. . = 1?2_
e N.. :averace number of hits ® Anomalous samples: shprt runs acquired in presence 2 f
hits & P of a controlled anomaly in the value of the threshold ~ | N
tension of the DT chamber i .
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=)

. R ¥ layer 2 : tgir (nS)
UniGe | A@qg%a ® Result of the test statistics
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di Fisica . 2 t
e Astronomia  UniGe ng.?ia
Galileo Galilei o0y
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Outlook

Next step is implementation with true LHC data.

Open theoretical guestions

® \Why exactly we get chi-squared distributed “t”?
® Regularisation selects space of alternatives, where we are looking for NP
A principled approach to regularisation and “reasonable” alternatives?

Model-Independent search algorithms also good for:

e Comparison between Monte Carlo Generators
e Data Validation/DQM
® Other GoF problems

When these techniques applied to real analyses, if truly
powerful, we will discover mis-modelled backgrounds.
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Outlook

Next step is implementation with true LHC data.

Open theoretical guestions

® \Why exactly we get chi-squared distributed “t”?
® Regularisation selects space of alternatives, where we are looking for NP

A principled approach to regularisation and “reasonable” alternatives?
®

Model-Independent search algorithms also good for:

e Comparison between Monte Carlo Generators
e Data Validation/DQM
® Other GoF problems

When these techniques applied to real analyses, if truly
powerful, we will discover mis-modelled backgrounds.

But, maybe, New Physics as well !!
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