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The High Energy Physics Triad
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The High Energy Physics Triad
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Random numbers ▶ Monte Carlo event generator 
 ▶ Detector simulation ▶ Event Reconstruction ▶ 

Simulated Event Sample

Random collision ▶ Detector response ▶ Trigger 
▶ Event Reconstruction ▶ Event Sample

statistical comparison



LHC Process Zoo
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LHC Process Zoo
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V+jets: background to most other processes & large rates even with several extra jets

signal processes for SM measurements & BSM searches 
often associated with several jets



Typical Use Case & Need for Precision
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[G. Aad et al. [ATLAS], Phys. Lett. B 816 (2021), 136204]
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[G. Aad et al. [ATLAS], Phys. Lett. B 816 (2021), 136204]

“measured signal yield to that predicted by the 
Standard Model, is  ”0.72+0.39

−0.36
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[G. Aad et al. [ATLAS], Phys. Lett. B 816 (2021), 136204]

“measured signal yield to that predicted by the 
Standard Model, is  ”0.72+0.39

−0.36

• results like this need (automated) first-
principle forward simulation for all relevant 
processes


• accuracy in perturbative expansion: 
(N)NLO QCD, (N)LO EW, NLL etc.


• multi-jet predictions


• quantifiable uncertainties for model 
parameters, perturbation theory, etc.


➡ MCEG provide this

➡ but precision simulations are expensive
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Event generation computing challenge
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• Run-III & HL-LHC CPU requirements spark renewed interest in efficiency 
[ATLAS HL-LHC Computing CDR, Valassi et al Challenges in MCEG software for HL-LHC arXiv:2004.13687]


• Event Generators is significant consumer of CPU hours


• Beyond addressing this important issue …


• … faster simulation also enables physics: better accuracy, higher jet multiplicity, etc.

composed of …

20%



Event Generation Bottlenecks
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phase space

35 %

clustering

tree-level ME 34 %

loop ME

11 %

PDF

rest+overhead
16 %

pp Ñ e`e´+0,1,2j@NLO+3,4,5j@LO

σpp→Xn
= ∑

ab
∫ dxadxb dΦn fa(xa, μ2

F)fb(xb, μ2
F) |ℳab→Xn

|2 Θn(p1, …, pn)

➡ relevant remaining bottleneck: phase-space & matrix elements  (ME)


- better phase-space sampling directly reduces number of ME evaluations

|ℳ |2

Our job is to sample this integral:

relative CPU time usage

for a typical ATLAS 

V+jets setup with SHERPA 
 

(after series of optimisations 
which give a ~40x speed-up,


thus ticking off one of the major 
HSF generator WG milestones)

[EB et al. 2209.00843] 
[Talk by C. Gutschow]



When expensive integrands meet poor sampling efficiencies
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• Low sampling efficiency , why?


- multi-modal, wildly fluctuating target 
distribution 


- subject to non-trivial acceptance 
cuts  


- high dimensionality 



• Good news: Fairly generic sampling/
integration problem

ϵ

fa fb |ℳ |2

Θn

dim[Φn] = 3n − 4

[Höche, Prestel, Schulz Phys.Rev.D 100 (2019) 1, 014024]

Number of trial events per accepted event

σpp→Xn
= ∑

ab
∫ dxadxb dΦn fa(xa, μ2

F)fb(xb, μ2
F) |ℳab→Xn

|2 Θn(p1, …, pn)

Our job is to sample this integral:

ϵ =
1

⟨Ntrials⟩

First figure of merit:

(rejection sampling efficiency)

Can we use ML/NN as a remedy without 
compromising on precision requirements?



Multi-channel importance sampling
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• Consider generic integral over target function 


• Choose variable mapping 





↪︎ reduce variance of MC estimate 
through suitable , such that 


↪︎ for multi-modal target use multi-channel  with  





↪︎ ME generators use physics knowledge about  to construct channels, 
mapping out prominent features/singularities, but not all features are known

f(x), x ∈ V ⊆ ℝd

y : V → U ⊆ ℝd

I = ∫V
ddx f (x) = ∫U

ddy
f (x)
g(x)

x≡x(y)

with
∂y(x)

∂x
= g(x)

g(x) w = f /g ≈ const .

g(x) = ∑
i

βigi(x) ∑
i

βi = 1

I = ∫V
ddx f (x) = ∑

i
∫V

ddx βi gi(x)
f (x)
g(x)

= ∑
i

∫Ui

ddyi βi
f (x)
g(x)

x≡x(yi)

fa fb |ℳ |2

Var ≈
⟨w2⟩ − ⟨w⟩2

N

Second figure of merit:

(Monte-Carlo variance)

We can embed ML into this for additional optimisation of . 
But we need to (i) guarantee phase-space coverage and (ii) cheap evaluation.

y(x)



Neural Importance Sampling (Normalising Flows)
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• Further generic optimisation of random number mapping 
entering phase-space channels 


• Chain of bijective maps, called coupling layers 


•  invertible+separable yields cheap Jacobian ~ 


•  arbitrary function → use DNN


•  piecewise quadratic → „Neural Importance Sampling“ 
first applied to ray tracing in 3D scenes 
[Müller et al. arXiv:1808.03856]


• very expressive+cheap non-linear 
variable transformations 
(non-factorisable!)

g(x)

ℓ

C 𝒪(d)

m

C

[Bothmann et al., SciPost Phys. 8 (2020) no.4, 069], [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]
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Neural Importance Sampling – Results
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• Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]


• GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi


• Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs 
[Stienen and Verheyen SciPost Phys. 10, 038 (2021)], [Butter, Plehn and Winterhalder, SciPost Phys. 7 (6), 075 (2019)], [Sipio et al. JHEP 08, 110 (2019)], 
[Otten et al. Nature Commun. 12 (1), 2985 (2021)], [Choi and Lim, J. Korean Phys. Soc. 78 (6), 482 (2021)]


- if no surjectivity guarantee → might miss tails of distributions and get small bias in overall integration result

remember: aim for , i.e. peaked distribution of w = f /g ≈ 1 w
Γt→be−νe

σe+e−→t[be+νe]t̄[b̄e−ν̄e]



NN integration of multi-loop integrals 
[Talk by D. Maître]
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Neural Importance Sampling – Spin-Offs
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Aim: Improve numerical evaluation of integral over Feynman parameters in multi-loop diagrams.

• 6 dimensions


• Achieve reduction of numerical uncertainties by 2–10x

[Winterhalder et al., “Targeting multi-loop integrals 
with neural networks”, arXiv:2112.09145 [hep-ph]]

[Jinno, Kälin, Liu and Rubira: “Machine Learning Post-
Minkowskian Integrals”, arXiv:2209.01091 [hep-th]]

2-loop, one massive 1,2,3-loop binary dynamics in GR

• 9 dimensions


• training phase included here


• Achieve precision target with less evaluations 
compared to VEGAS 2–3x

Method: Use Neural Importance Sampling to improve sampling

Related: application of Normalising Flows in Lattice Field Theory 
[Talk by A. Singha]

More on integrating loops 
[Plenary Talk by S. Badger, Talks by E. de Doncker, A. Butter]



Exploring Phase Space with Nested Sampling
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• Transfer Bayesian inference algorithm to our sampling problem


• applications in cosmology, statistical thermodynamics, 
material science


• wide range of existing tools, e.g. PolyChord [Handley, Hobson and Lasenby]


• Consider uniform prior, posteriori matching target distribution


• aim: optimise rejection sampling efficiency , example :ϵ gg → ng

[Yallup, Janßen, Schumann and Handley, Eur. Phys. J. C 82 (2022), 8]

effi
ci

en
cy

ϵ

Illustration of Algorithm:



Active research on alternative approaches
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• live with low phase-space efficiency, 
but make  evaluation much faster

• surrogate unweighting 

[Danziger et al. 2109.11964], [Talk by T. Janßen]

- use integrand emulator for trial events

- correct accepted events later to exact result by 

2nd rejection step

- emulation must be close to the real thing, but 

failure to do so only reduces gain factor

- proof-of-concept: simple DNN gives effective 

gain factors between 2 and 10

- provides use case for more sophisticated ME 

emulators 
[Maître and Truong, JHEP 11 (2021), 066], [Aylett-Bullock, 
Badger and Moodie, JHEP 08 (2021), 066], [Badger et al., 
arXiv:2206.14831 [hep-ph]], [Janßen, Maître, Schumann, 
Siegert and Truong, tbp soon]


• Accelerated : GPU, Vector Engines, …

• madgraph4gpu  

[Talk by A. Valassi]

• BlockGen 

[Talks by M. Knobbe, T. Childers]

|ℳ |2

|ℳ |2

phase space

35 %

clustering

tree-level ME 34 %

loop ME

11 %

PDF

rest+overhead
16 %

pp Ñ e`e´+0,1,2j@NLO+3,4,5j@LO

{R}

event

…
{R}

event

{R}

event

{R}

event
…

|ℳ |2
surrogate

surrogate unweighted events

true |ℳ |2

correct unweighted events



• The Problem


- LHC physics programme & computing demands efficient 
event generation, for signal and background processes


- Main event generator bottleneck identified:


- Expensive (N)NLO ME and many-jets LO ME evaluations


- Combined with inefficient phase-space sampling


• Solutions (active & explorative research!)


- Development and implementation of novel sampling algorithms 
Neural Importance Sampling, Nested Sampling, …


- Beyond toy examples, traditional approaches not so easy to beat


- Many more ideas (see previous slide) 
surrogate NN models, faster (GPU-accelerated) ME, …


• Interdisplinary relevance 
for range of integration/sampling problems


- Cross talk to many other fields 
ML, Lattice FT, cosmo, industry, …

Conclusions
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