Machine Learning for Beyond The Standard Model Physics

27.10.2022, ACAT 2022 Bari

Sven Krippendorf (sven.krippendorf@physik.uni-muenchen.de, @krippendorfsven)

Our purpose in theoretical physics is not to describe the world as we find it, but to explain - in terms of a few fundamental principles - why the world is the way it is.

Steven Weinberg

What are these fundamental principles lying beyond our Standard Models?

Can ML reveal them?

Understanding BSM physics with ML

- Finding where to look for BSM physics, e.g. via:

Goodness of fit (cf. Wulzer's talk), Anomaly Detection (cf. Kasieczka's talk)

- Beyond knowing where to look, we would like to understand which Lagrangian is describing our new physics.
What are the building blocks (mathematical structures) of BSM physics?
- This has been at the heart of theorists' work over decades, the development of the Standard Model being the prime example. Still the theory parameter space is widely unexplored.
Problem: HUGE search space

Examples of humanly identified building blocks

Physics \cap ML

Finding structures in the wider perspective

Algorithms for identifying pattern/structure in huge search spaces (e.g. image, text generation)

Searching for (new) structures
 General pipeline

- Finding new/unknown structures is not a supervised learning problem.
- Supervised problems can only help for the actual unsupervised problem.
- Defining the optimisation problem is problem specific at this stage. Nevertheless there are already general lessons.
- Four steps:

1. Defining optimisation problem

Optimisation problem
Data selection

Architecture selection
2. Selecting the right data for solving the optimisation problem
3. Selecting a suitable architecture
4. Evaluating the result and connecting with other pipelines

- This approach is not limited to mathematical structures but also applies for phenomenological models.
- Advantage in mathematical data: no noise and detector effects

Content

Examples of identifying mathematical structures with ML

- Today's focus: unsupervised ML to look for finding symmetries and integrability in physical systems as a warm-up
- No direct optimisation available: Symmetries from embedding layer [arXiv:2003.13679]
- Symmetries from samples of phase space [arXiv:2104.14444]
- Towards new physics applications: integrability from samples of phase space [arXiv:2103.07475]

Symmetries from embedding layer

How to search for symmetries?

The problem

1. How to find invariances?

$$
f(\phi)=f(\tilde{\phi})
$$

2. Which symmetry is behind such an invariance?

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together
Word2Vec does it:
(England - London $=$ Paris - France)
[1301.3781, used for re-discovering periodic table 1807.05617,
classifying scents classifying scents of molecules 1910.10685]

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together
Word2Vec does it:
(England - London = Paris - France)
[1301.3781, used for re-discovering periodic table 1807.05617,

Can we search for symmetries in this way?

```
Yes!
```

Examples: SO(2), SU(2), discrete symmetries (CICY)

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together
Word2Vec does it:
(England - London $=$ Paris - France)
[1301.3781, used for re-discovering periodic table 1807.05617,
 classifying scents of molecules 1910.10685]

How to determine the symmetry?

Connected points in input space:

Which symmetry?

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators:

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators:

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Other Examples?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators

How to determine the symmetry?

Connected points in input space:

Which symmetry?

Other Examples?

Determine generator connecting points in (sub)-space:

$$
p^{\prime}=p+\epsilon_{a} T^{a} p
$$

Repeat multiple times (covering all sub-spaces) and perform PCA on generators:

Symmetries from data (samples of phase space)

Defining optimisation

Optimisation problem

Predicting trajectories

Data selection

Architecture selection

Which problem are we interested in?
Evaluation

- How can we define an energy function whose minima result in appropriate models?
- From current particle position and momentum predict the next time step/change of position and momentum

- Option 1: predict directly \dot{p}, \dot{q}
- Option 2 (domain knowledge): predict Hamiltonian and use auto-differentiation for \dot{p}, \dot{q}
- Predicting Hamiltonian ensures physics bias of energy conservation

Grav. 2-body system

Can we learn more structures from samples of phase space?

More structures from neural networks?

- If we can train NNs to find the Hamiltonian of a system, can we use it to learn other interesting structures?
- Symmetries of the system? E.g. via canonical transformations (cyclic coordinates reveal conserved quantities)
- How does this work? 2 key steps:

1. Formulate your physics search problem as an optimisation problem.
2. Make sure it's learnable for your architecture.

- Good news for analytic understanding of numerical approximations: most physics functions are simple
- Interesting side effect: quantify how much these structures help in predicting dynamics

Al for Simulations - Symmetries

Introducing physicists' bias

SCNNs: We cannot only learn the Hamiltonian but also the symmetries by enforcing canonical coordinates

Modified Losses:

$$
0=\dot{F}_{k}(p, q)=\left\{H(p, q), F_{k}(p, q)\right\}
$$

Additional constraint on motion (not just energy conservation), i.e. motion takes place on hyper-surface in phase space

Al for Simulations - Symmetries
 Introducing physicists' bias

SCNNs: We cannot only learn the Hamiltonian but also the symmetries by enforcing canonical coordinates

Modified Losses for canonical coordinates:

- Hamilton equations:

$$
\left\{\begin{array}{l}
\dot{P}_{i}(p, q)=-\frac{\partial H(p, q)}{\partial Q_{i}(p, q)}=0 \quad \text { and } \quad \dot{Q}_{i}(p, q)=\frac{\partial H(p, q)}{\partial P_{i}(p, q)} \\
\left\{P_{i}, Q_{j}\right\}=\delta_{i j} \quad \text { and } \quad\left\{P_{i}, P_{j}\right\}=\left\{Q_{i}, Q_{j}\right\}=0
\end{array}\right.
$$

- Poisson algebra:

Benefits from Physicists' Bias

- Conserved quantities interpretable:

$$
\begin{aligned}
& P_{c_{1}}=-4.2 p_{x_{1}}-4.2 p_{x_{2}}-1.3 p_{y_{1}}-1.3 p_{y_{2}}, P_{c_{2}}=-0.9 p_{x_{1}}-0.9 p_{x_{2}}-3.2 p_{y_{1}}-3.2 p_{y_{2}} \\
& L=-1.1 q_{x_{1}} p_{y_{1}}+0.9 q_{x_{1}} p_{y_{2}}+0.9 q_{x_{2}} p_{y_{1}}-1.0 q_{x_{2}} p_{y_{2}}+1.0 q_{y_{1}} p_{x_{1}}-0.9 q_{y_{1}} p_{x_{2}}-0.9 q_{y_{2}} p_{x_{1}}+1.0 q_{y_{2}} p_{x_{2}}
\end{aligned}
$$

- Using learned conserved quantities helps in predicting trajectories

Can we search for new mathematical/physical structures?

Symmetries \rightarrow Integrability

Integrability

A lightning overview

- Additional constraint F_{k} on motion:

$$
0=\dot{F}_{k}=\left\{H, F_{k}\right\}
$$

How many F_{k} can there be?

- System (2n dimensional) integrable iff: n independent, everywhere differentiable integrals of motion F_{k} (in involution).
- Alternatively search for Lax pair:

$$
\dot{L}=[L, M]
$$

s.t. eom are satisfied. Conserved quantities via:

$$
F_{k}=\operatorname{tr}\left(L^{k}\right)
$$

(additional condition for $\left\{F_{k}, F_{j}\right\}=0$)

Example: Harmonic Oscillator

- Hamiltonian and EOM:

$$
H=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} q^{2} ; \quad \dot{q}=p, \dot{p}=-\omega^{2} q
$$

- Lax pair:

$$
L=a\left(\begin{array}{cc}
p & b \omega q \\
\frac{\omega}{b} q & -p
\end{array}\right), \quad M=\left(\begin{array}{cc}
0 & \frac{b}{2} \omega \\
-\frac{\omega}{2 b} & 0
\end{array}\right)
$$

- Conserved quantities:

$$
\begin{aligned}
& F_{1}=2 \lambda \\
& F_{2}=2 \lambda^{2}+4 H \\
& F_{3}=2 \lambda^{3}+12 \lambda H \quad \lambda \ldots \text { spectral parameter }
\end{aligned}
$$

Integrability

A search problem with many examples and unexplored theory space

Having a Lax pair formulation of integrability is very convenient, but

- inspiration is needed to find it,
- its structure is hardly transparent,
- it is not at all unique,
- the size of the matrices is not immediately related to the dimensionality of the system.

Therefore, the concept of Lax pairs does not provide a means to decide whether any given system is integrable (unless one is lucky to find a sufficiently large Lax pair).

Beisert: Lecture Notes on Integrability (p17)

Applications:

- Classical mechanics (e.g. planetary motion)
- Classical field theories ($1+1$ dimensions)
- Spin Chain Models
- $D=4 \mathrm{~N}=4 \mathrm{SYM}$ in the planar limit
- ...

We need some deus ex machina moment

Nonlinear Sciences > Exactly Solvable and Integrable Systems [Submitted on 12 Mar 2021]
Integrability ex machina

[^0]
Formulating the search as optimisation

Formulating the search as optimisation

- Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)

Formulating the search as optimisation

- Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
- Lax equation as loss:

$$
\dot{L}=[L, M] \rightarrow \mathscr{L}_{\mathrm{Lax}}=|\dot{L}-[L, M]|^{2}
$$

Formulating the search as optimisation

- Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
- Lax equation as loss:

$$
\dot{L}=[L, M] \rightarrow \mathscr{L}_{\mathrm{Lax}}=|\dot{L}-[L, M]|^{2}
$$

- Equivalence to EOM (e.g. $\dot{x}_{i}=f_{i}\left(x_{i}, \partial x_{i}, \ldots\right)$): L has to include x_{i} in some component (LHS of EOM), $[L, M]$ has to include RHS of EOM

$$
\begin{aligned}
\mathscr{L}_{\mathrm{L}} & =\sum_{i, j} \min _{k}\left(\left\|c_{i j k} \dot{L}-\dot{x}_{k}\right\|^{2},| | \dot{L}_{i j} \|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|c_{i j k} \dot{L}_{i j}-\dot{x}_{k}\right\|^{2}\right), \quad c_{i j k}=\frac{\sum_{\text {batch }} \dot{L}_{i j}}{\sum_{\text {batch }} \dot{x}_{k}} \\
\mathscr{L}_{\mathrm{LM}} & =\sum_{i, j} \min _{k}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k}\right\|^{2}, \mid\left\|[L, M]_{i j}\right\|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k} \mid\right\|^{2}\right), \tilde{c}_{i j k}=\frac{\sum_{b a t c h}[L, M]_{i j}}{\sum_{b a t c h} f_{k}}
\end{aligned}
$$

Formulating the search as optimisation

- Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
- Lax equation as loss:

$$
\dot{L}=[L, M] \rightarrow \mathscr{L}_{\mathrm{Lax}}=|\dot{L}-[L, M]|^{2}
$$

- Equivalence to EOM (e.g. $\dot{x}_{i}=f_{i}\left(x_{i}, \partial x_{i}, \ldots\right)$): L has to include x_{i} in some component (LHS of EOM), $[L, M]$ has to include RHS of EOM

$$
\begin{aligned}
\mathscr{L}_{\mathrm{L}} & =\sum_{i, j} \min _{k}\left(\left\|c_{i j k} \dot{L}-\dot{x}_{k}\right\|\left\|^{2},| | \dot{L}_{i j}\right\|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|c_{i j k} \dot{L}_{i j}-\dot{x}_{k} \mid\right\|^{2}\right), \quad c_{i j k}=\frac{\sum_{\text {batch }} \dot{L}_{i j}}{\sum_{\text {batch }} \dot{x}_{k}} \\
\mathscr{L}_{\mathrm{LM}} & =\sum_{i, j} \min _{k}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k}\right\|\left\|^{2},\right\|[L, M]_{i j} \|^{2}\right)+\sum_{k} \min _{i j}\left(\left\|\tilde{c}_{i j k}[L, M]_{i j}-f_{k} \mid\right\|^{2}\right), \tilde{c}_{i j k}=\frac{\sum_{b a t c h}[L, M]_{i j}}{\sum_{b a t c h} f_{k}}
\end{aligned}
$$

- Avoiding mode collapse:

$$
\mathscr{L}_{\mathrm{MC}}=\max \left(1-\sum\left|A_{i j}\right|, 0\right)
$$

- Total loss:

$$
\mathscr{L}_{\mathrm{Lax}-\mathrm{pair}}=\alpha_{1} \mathscr{L}_{\mathrm{Lax}}+\alpha_{2} \mathscr{L}_{\mathrm{L}}+\alpha_{3} \mathscr{L}_{\mathrm{LM}}+\alpha_{4} \mathscr{L}_{\mathrm{MC}}
$$

Applications

Harmonic Oscillator

- Harmonic Oscillator:

$$
H=\frac{1}{2} p^{2}+\frac{\omega^{2}}{2} q^{2} ; \quad \dot{q}=p, \quad \dot{p}=-\omega^{2} q
$$

- Lax Pair:

$$
L=\left(\begin{array}{cc}
0.437 q & -0.073 p \\
-0.666 p & -0.437 q
\end{array}\right), \quad M=\left(\begin{array}{cc}
0.001 & 0.329 \\
-3.043 & -0.001
\end{array}\right)
$$

- Consistency check:

$$
\frac{d L}{d t}=\left(\begin{array}{cc}
0.437 \dot{q} & -0.073 \dot{p} \\
-0.666 \dot{p} & -0.437 \dot{q}
\end{array}\right)=\left(\begin{array}{cc}
0.441 p & 0.288 q \\
2.660 q & -0.441 p
\end{array}\right)=[L, M]
$$

- Conserved quantities:

$$
L^{2}=\left(\begin{array}{cc}
0.048618 p^{2}+0.190969 q^{2} & 0 \\
0 & 0.048618 p^{2}+0.190969 q^{2}
\end{array}\right) \Rightarrow \operatorname{tr} L^{2} \approx 0.2 H
$$

Applications

Further systems

- Korteweg-de Vries (waves in shallow water):

$$
\dot{\phi}(x, t)+\phi^{\prime \prime \prime}(x, t)+6 \phi(x, t) \phi^{\prime}(x, t)=0
$$

- Heisenberg magnet:

$$
\begin{gathered}
H=\frac{1}{2} \int d x \vec{S}^{2}(x), \vec{S} \in S^{2} ; \text { constraint: } \\
\left\{S_{a}(x), S_{b}(y)\right\}=\epsilon_{a b c} S_{c}(x) \delta(x-y)
\end{gathered}
$$

- $\mathrm{O}(\mathrm{N})$ non-linear sigma models (Sine-Gordon equation and principal chiral model):

$$
\mathscr{L}=-\operatorname{Tr}\left(J_{\mu} J^{\mu}\right), \quad J_{\mu}=\left(\partial_{\mu} g\right) g^{-1}, \quad \mu=0,1 .
$$

Perturbations on integrable systems

- Harmonic Oscillator:

$$
H_{0}=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+\omega^{2}\left(q_{x}^{2}+q_{y}^{2}\right)
$$

- Are the following perturbations integrable:

$$
H_{1}=\epsilon q_{x}^{2} q_{y}^{2}, \quad H_{2}=\epsilon q_{x} q_{y}
$$

- Initialise network at known solution for unperturbed system and see how it reacts to samples from perturbed
 system

Conclusions

- ML search for new types of BSM physics requires search and identification of mathematical structures.
- ML to search for mathematical structures requires careful setting up of learning problem (loss, data, architecture, evaluation/integration)
- We can use ML to identify symmetries in an unsupervised way: embedding layer [no direct optimisation], phase space samples [energy functionals using classical mechanics knowledge]
- Road to making these ML search strategies useful: learning Lax pairs to identify integrability of system. Enables search for integrable perturbations.
- Symmetries are one example, talk to me for our work on extra-dimensional metrics or search for dualities.

Thank you!

2104.14444: Simulations with Symmetry Control Neural Networks 2103.07475: Integrability
2003.13679: Symmetries from Embedding Layer

For talks at the interface of physics and ML: physicsmeetsml.org

[^0]: Sven Krippendorf, Dieter Lust, Marc Syvaeri

