Machine Learning for Beyond
The Standard Model Physics

M
27.10.2022, ACAT 2022 Bari MG

Sven Krippendorf (sven.krippendorf@physik.uni-muenchen.de, @krippendorfsven)



mailto:sven.krippendorf@physik.uni-muenchen.de

Our purpose in theoretical physics is not to describe the world as we find it,

but to explain - in terms of a few fundamental principles - why the world is
the way it is.

Steven Weinberg

What are these fundamental principles
lying beyond our Standard Models?

Can ML reveal them?



Understanding BSM physics with ML
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* Finding where to look for BSM physics, e.g. via: s=0 : vr* ‘Z+ TBy .
Goodness of fit (cf. Wulzer’s talk), Anomaly Detection i=1 t LY FyPon
(cf. Kasieczka’s talk) KK +Ra Ve §

q=—1 q=20

 Beyond knowing where to look, we would like to =

understand which Lagrangian is describing our new Examples of humanly identified building blocks

physics.
What are the building blocks (mathematical
structures) of BSM physics?

* This has been at the heart of theorists’ work over
decades, the development of the Standard Model
being the prime example. Still the theory parameter
space is widely unexplored.

Problem: HUGE search space




Physics N ML

Finding structures In the wider perspective

If we have true artificial intelligence, it needs to be
able to do theoretical physics and mathematics.
What is needed to build such a system? I/t does not
work out of the box, dedicated design necessary!

emerging field:

Gur-Ari et al., Minerva Undergrad physics
Polu et al., Undergrad maths
Charton et al., Maths with Transformers

Physics

.

~

Machine Learning

Algorithms for identifying pattern/structure in huge search spaces (e.g. image, text generation)



Searching for (new) structures

General pipeline

* Finding new/unknown structures is not a supervised learning problem.

e Supervised problems can only help for the actual unsupervised problem.

* Defining the optimisation problem is problem specific at this stage.
Nevertheless there are already general lessons.

 Four steps:
1. Defining optimisation problem
2. Selecting the right data for solving the optimisation problem
3. Selecting a suitable architecture
4. Evaluating the result and connecting with other pipelines

* This approach is not limited to mathematical structures but also applies
for phenomenological models.

* Advantage in mathematical data: no noise and detector effects

Optimisation problem

Data selection

Architecture selection

Evaluation



Content

Examples of identifying mathematical structures with ML

* Joday’s focus: unsupervised ML to look for finding symmetries and
integrability in physical systems as a warm-up

* No direct optimisation available: Symmetries from embedding layer
[arXiv:2003.13679]

* Symmetries from samples of phase space [arXiv:2104.14444]

 Jowards new physics applications: integrability from samples of phase
space [arXiv:2103.07475]



Symmetries from embedding layer
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How to search for symmetries?
The problem

1. How to find invariances?

f@) = fip)

2. Which symmetry is behind
such an invariance?
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How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together
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Feed-forward network

How to search for symmetries?

No direct optimisation available: embedding in deep layer

Embedding
Deep Layer

We need: group input with the same meaning together
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Feed-forward network

How to search for symmetries?

No direct optimisation available: embedding in deep layer

Embedding
Deep Layer

We need: group input with the same meaning together

el
| \,a\l
Word2Vec does it: 0639 England @
(England - London = Paris - France)  ondon ® France ®

Paris @
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Feed-forward network

How to search for symmetries?

No direct optimisation available: embedding in deep layer

Embedding
Deep Layer

[Classification j

We need: group input with the same meaning together

Word2Vec does It:

(England - London = Paris - France) England ®

| ondon @ France @
Paris @

[1301.3781, used for re-discovering periodic table 1807.05617,
classifying scents of molecules 1910.10685]
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How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together

Word2Vec does it:
(England - London = Paris - France)

[1301.3781, used for re-discovering periodic table 1807.05617,
classifying scents of molecules 1910.10685]
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Feed-forward network

Embedding
Deep Layer
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C : C _ ’.\"' ‘%
onnected points Iin input space: o %
A

e

3, ¢

Which symmetry? % Y

-1 G 0.00 —1.00

[1.00 0.01 ]
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

!.'s (T N ‘\'.

X
¢
3. 2
Which symmetry? %< &b

G [ 0.00 —1.00 ]

Connected points in input space:

1.00 0.01

0

Determine generator connecting points in (sub)-space:
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C : C _ ’.\Q’g ‘%
onnected points Iin input space: o %
A

e

3, ¢

Which symmetry? % Y

-1 G 0.00 —1.00

[1.00 0.01 ]

Determine generator connecting points in (sub)-space:

a

p'=p+eTI
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C ints in i N
onnected points Iin input space: o %
A

0 0

3, ¢

Which symmetry? % Y

-1 G 0.00 —1.00
[1.00 0.01 ]

Determine generator connecting points in (sub)-space:

a

p'=p+eTI

Repeat multiple times (covering
all sub-spaces) and perform PCA
on generators:
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C nts in i o Lt
onnected points Iin input space: o %
A

0 0
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Which symmetry? % Y

1- o [0.00 —1.00]

1.00 0.01

Determine generator connecting points in (sub)-space:

a

p'=p+eTI
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Repeat multiple times (covering

o
O
all sub-spaces) and perform PCA 5 °°
on generators: § 0.6
> 04
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C nts in i o Ll
onnected points Iin input space: o %
A
0] 0
3, ¢
Which symmetry? % Y 4 Other Examples?
-1 G 0.00 —1.00
[1.00 0.01 ]

Determine generator connecting points in (sub)-space:

a

p'=p+eTI

=
N
1

=
o
1

Repeat multiple times (covering
all sub-spaces) and perform PCA
on generators:

c o 9
~ o 0o

Respective Standard Deviation
o
N
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

: C i ’.‘ "‘ ‘\ SO(4) generators
Connected points in input space: o o S 035 —e— Points: 500, 7~ ATL,0.01), £ = 0.3
* & © —e— Points: 1000, r~ A{(1,0.01), £ =0.3
® >0.30 —e— Points: 5000, r~ A(1,0.1), e = 0.3
J & g
\‘ ? 5 0.25
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Which symmetry? %< Y 4 Other Examples? 8 015
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Determine generator connecting points in (sub)-space: PCA-Component
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C ints in i N
onnected points Iin input space: o %
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Other Examples?

SU(2) generators
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How to determine the symmetry?

Points: 200, r~ N(1, 0.05), e=0.3

C ints in i N
onnected points Iin input space: o %
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Other Examples?

SU(2) generators
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Symmetries from data
(samples of phase space)



Optimisation problem

Defining optimisation

Predicting trajectories

Data selection

Architecture selection

Which problem are we interested in? Evaluation
> How can we define an energy function whose
minima result in appropriate models? 4 TP Grav. 2-body system
| . ' * Predicting Hamiltonian ensures Ground
* From current particle position and momentum physics bias of energy conservation truth
predict the next time step/change of position and
momentum Auto-Differentiation
Input Target —_— — ,
" ° \‘ Baseline ™~
| | g : A 4 ) (o rd T
P r p Biased P=" % ' ‘.
— | Model |—» | . — - | H |=>»| | :
q 1 q Model §=—
\. y - / _ % RN A
. o . HNN =
* Option 1: predict directly p, g * Note: this optimisation problem is
* Option 2 (domain knowledge): predict predicting a Hamiltonian without i
Hamiltonian and use auto-differentiation for p, ¢ ~ knowing the Hamiltonian in advance. "%
\;\\l:_;,a—/

Greydanus, Dzamba, Yosinski 1906.01563 i



Can we learn more structures
from samples of phase space?




More structures from neural networks?

* |f we can train NNs to find the Hamiltonian of a system, can we use it to learn other
interesting structures?

o Symmetries of the system? E.g. via canonical transformations (cyclic coordinates
reveal conserved quantities)

 How does this work? 2 key steps:
1. Formulate your physics search problem as an optimisation problem.
2. Make sure it’s learnable for your architecture.

 (Good news for analytic understanding of numerical approximations: most physics
functions are simple

* |nteresting side effect. quantify how much these structures help in predicting
dynamics

14



Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
| | | , |
Introducing physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries e

by enforcing canonical coordinates paseline ™ n
7 \
r 2 (_ o : |

p Biased =" \ ,

- = H |=»| on L\, /
Model 4=— R 2
N y p NN /:/:i

_ HNN =™ “*=s,
p’ q —> Tw(p’ (I): Ganonical +( Pother’ (20ther )+ %qb(Pcyclic’ Pother’ Qother) — p T _d)’ q - _¢ ’ZZI \\‘\:“
(Input) Transformation Network ~ Hamiltonian Network (gq tput) op 5,':: \‘r:‘l
\- / Qc clic - / - it J ‘:‘:\l‘\ ﬁZ"
\§§i:§\1y/};l
Modified Losses: SCNN ““<%u
_ ° _ //' \\

O — Fk(pa Q) — {H(pa Q)aFk(pa Q)} ,’/ ‘\

" . . . . ; \
Additional constraint on motion (not just energy conservation), \ }

l.e. motion takes place on hyper-surface in phase space ‘\ Vi

Krippendorf, Syvaeri 2104.14444 15



Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
Introducing physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries ===
by enforcing canonical coordinates JBaseline ™~
7 \
~ ~ / @c}’clic = CODSO \ - ~ :\‘ :':
p! q —> T‘//(p’ q) Canonical ->( P ther? Q th )" H qb(Pcyclic’ Pother’ Qother) — | PpP=-— %, q= % ::\\\ //II ‘
(Input) kTransformation Network) ~Z - Hamiltonian Network (?)?Jtput) op ‘\\‘\::\ // //
. _ J U y SNt S
Modified Losses for canonical coordinates:
| OH(p, q) . H(p, )\ | S\
* Hamilton equations: | P,(p,q) = 247 _ 0 and Qip,q) = P-4 s —
aQi(pa Q) aPl(pa Q) SCNN “===5,
. p \\
* Poisson algebra: (P, 0} =06; and {P,P}={0,0}=0 / \
! ;
\ ,'
\‘\ //I
Krippendorf, Syvaeri 2104.14444 Additional Loss terms S g
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 Conserved quantities interpretable:

Cq

L =-1.1¢, p, +0.9¢, p, +0.9q, p, —1.0g, p, +1.0g, p, —0.9¢q, p, —0.9¢, p, +1.0q, p,

* Using learned conserved quantities helps In

predicting trajectories

Benefits from Physicists’ Bias

P =— 4-2le — 4-2sz — 1.3py1 — 1.3py2 ] PC2 = — 0-9le — O.9px2 — 3.2py1 — 3.2py2
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Can we search for new mathematical/physical structures?

Symmetries — Integrability

18 Krippendorf, Lust, Syvaeri 2021
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Integrability

A lightning overview

« Additional constraint F; on motion: Example: Harmonic Oscillator

e Hamiltonian and EOM:
How many F; can there be? 1 )

* System (2n dimensional) integrable iff: 2 2
n independent, everywhere differentiable

integrals of motion £, (in involution). + Lax parr i
p bwg 0 S W
» Alternatively search for Lax pair: L=a (ﬂ —p > “l_e
L =[L M) b 2
s.t. eom are satisfied. Conserved quantities * Conserved quantities:
via: Fi=2A4
F, = tr(L") F, =2A*+4H

(additional condition for {Fk, F}} — O) F3 — Zﬂﬁ -+ 12/1H A... spectral parameter

19
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Integrability

A search problem with many examples and unexplored theory space

e

/
/

- Having a Lax pair formulation of integrability is very convenient, but

\We need some deus ex machina moment...

inspiration is needed to find it,
its structure is hardly transparent, w% ‘
it is not at all unique, e 3 Y
the size of the matrices is not immediately related to the dimensionality of the
system.

Therefore, the concept of Lax pairs does not provide a means to decide whether
any given system is integrable (unless one is lucky to find a sufficiently large Lax

alr).
pair) Beisert: Lecture Notes on Integrability (p17)J

Applications:
- Classical mechanics (e.g. planetary motion)
- Classical field theories (1+1 dimensions)

- Spln Chain Models Nonlinear Sciences > Exactly Solvable and Integrable Systems
- D=4 N=4 SYM in the planar limit [submitted on 12 Mar 2021]
_ Integrability ex machina

k j Sven Krippendorf, Dieter Lust, Marc Syvaeri

20



Formulating the search as optimisation



Formulating the search as optimisation

 Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)



Formulating the search as optimisation

 Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
* Lax equation as loss:

L=[LM -, = |L— [L,M]|2

21



Formulating the search as optimisation

 Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
* Lax equation as loss:

L=[LM -, = |L— [L,M]|2

. Equivalence to EOM (e.g. X; = J; (xl-, ox,, . .. )): L has to include x; in some component (LHS of EOM), [L, M| has to
include RHS of EOM .
Zbatch Lij

. . . g . p) . - . 9
2= Y min (Heph =i P 1L P ) + X min (Hepdy =117, =St
L] k k Y zbaztchxk

L]
' ~ : - 2 LM,
gLM=kam<\\Clyk[L,M]lj—kaz,\\[L,M],;,-H2>+ZH§:]1_H<HCWC[L,M]Z-J-—J”/¢\\2> o ¢
k

, Ciip =
L] '\ / " zbatch ﬁ‘

only fixed up to proportionality (loss function independent of refactor)

21



Formulating the search as optimisation

Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
Lax equation as loss:

L=[LM -, = |L— [L,M]|2

Equivalence to EOM (e.g. X; = J; (xl-, ox,, . .. )): L has to include x; in some component (LHS of EOM), [L, M| has to
include RHS of EOM

. N ST . .0 2 paren Lis
ngzmln<HCljkL—ka ,HLZJH )+Zmln<HCljkLlJ_ka )! Cljkz atch .lJ
i k I U zbaztch A
’ . ~ 2 2 . ~ 2 - Zbatch L, M]ij
P =Y min ([1&5 LM~ fil P LM P ) + Y min (165 (LM~ £l 7). 5=
. ij v v Y N A Lparcn i
AVOIdmg mode Collapse: only fixed up to proportionality (loss function independent of refactor)

P\ = max (1 = |Aij| ,0)

Total loss:

Zz Lax—pair — alg Lax T 0‘23 LT a3°cz LM T a4°<Z MC

21



Applications

Harmonic Oscillator

e Harmonic Oscillator: ,
1

W

2 2
(97 003 py o (0001 0.329
—0.666 p —0.437 q )’ —3.043 —0.001

q- g=p, p=-w4q

e [ax Pair:

* Consistency check:

dL (0437¢ -0.073p\ (0441p 0.288¢
dt  \—0.666 p —0437¢g) \2.660¢g —0.441p

* Conserved quantities:
i (0.048618p2 +0.1909694> 0
L —_

) = [L,M]

— = trl?~ 02 H
0 0.048618p* + 0.190969¢°

22



Applications

Further systems

| | 4 17 174+10
» Korteweg-de Vries (waves in shallow water): T \17g+1.0  —179 )
: . / A 5.00% + 1.7¢" —5.00%2 —1.7¢" — 0.5
Ox, 1)+ Q" (x, 1)+ 6(x,)p'(x,1) =0 T\ 25.002 - 179" =05 5.042+1.7¢"
* Heisenberg magnet:
1 Ax=—15’§+0.3(é 2)
—, —
H=—|dxS?*x), S € 57 constraint: o 218 208425,
p) "\ 2i8,-25, -iS8,
{S a(X), Sb(y)} — Gach C(x)é(x — y) n ( +5;Sm—iszii_ii(gjgj_s;sw) —SszJ: fi; +1 (isgfgy— S,Sz) )

. =~ . /
=2105 + 1¢€,;,0:5;5; ,

* O(N) non-linear sigma models (Sine-Gordon equation and
principal chiral model):

L =-Te(JJ", J,=00,8g ", u=0,1.

23



Perturbations on integrable systems

e Harmonic Oscillator:

p; +D;
Hy=—2

— 1.0

+ o’ (%? + g, ) o

2m 7 R — 001
10_2é ;;'""""'"""""'"""""‘."':'«3-".;:-,w,u e — 0.001
* Are the following perturbations % 103 ] — 00
integrable: R | ———————— values for e
— 2,2 _ 5
Hl — ¢4x qY’ H2 _ quQy 107 5 H,: integrable
1071 M o AL M‘ A
iy . . 1 T o ‘»( % ‘ HTEANE
* Initialise network at known solution for o L R
unperturbed SyStem and SEC hOW It (I) 1O(I)OO 20(|)OO 30(I)OO 40600 SO(I)OO 60(|)OO 7O(I)OO 80(I)OO
reacts to samples from perturbed steps
system

24



Conclusions

Points: 200, r~ WN{(1,0.05), e=0.3

’!‘Rafs‘\.

S

3, ¢

: . . e . % &bl

ML search for new types of BSM physics requires search and identification 1 =i ]

of mathematical structures. T
'Eagéline ‘::Z::\ |
ML to search for mathematical structures requires careful setting up of \
learning problem (loss, data, architecture, evaluation/integration) '\ :

* We can use ML to identify symmetries in an unsupervised way: embedding T

layer [no direct optimisation], phase space samples [energy functionals N
using classical mechanics knowledge]

 Road to making these ML search strategies useful: learning Lax pairs to s’

identify integrability of system. Enables search for integrable perturbations.

 Symmetries are one example, talk to me for our work on extra-dimensional \
metrics or search for dualities.
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Thank you!

2104.14444: Simulations with Symmetry Control Neural Networks
2103.07475: Integrabillity
2003.13679: Symmetries from Embedding Layer

For talks at the interface of physics and ML: physicsmeetsmi.org
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