
Machine Learning for Beyond 
The Standard Model Physics

27.10.2022, ACAT 2022 Bari 
Sven Krippendorf (sven.krippendorf@physik.uni-muenchen.de, @krippendorfsven)

1

mailto:sven.krippendorf@physik.uni-muenchen.de


Our purpose in theoretical physics is not to describe the world as we find it,
but to explain - in terms of a few fundamental principles - why the world is 
the way it is. 

Steven Weinberg 

Can ML reveal them?

What are these fundamental principles 
lying beyond our Standard Models?
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Understanding BSM physics with ML

• Finding where to look for BSM physics, e.g. via: 
Goodness of fit (cf. Wulzer’s talk), Anomaly Detection 
(cf. Kasieczka’s talk)


• Beyond knowing where to look, we would like to 
understand which Lagrangian is describing our new 
physics. 
What are the building blocks (mathematical 
structures) of BSM physics?


• This has been at the heart of theorists’ work over 
decades, the development of the Standard Model 
being the prime example. Still the theory parameter 
space is widely unexplored. 
Problem: HUGE search space

Examples of humanly identified building blocks

BSM

SMSM

UV framework

Cartoon of unexplored theory space3



Physics  ML∩
Finding structures in the wider perspective

Physics

If we have true artificial intelligence, it needs to be 
able to do theoretical physics and mathematics. 

What is needed to build such a system? It does not 
work out of the box, dedicated design necessary!

Machine Learning

emerging field:

Gur-Ari et al., Minerva Undergrad physics 
Polu et al., Undergrad maths 
Charton et al., Maths with Transformers

…

Algorithms for identifying pattern/structure in huge search spaces (e.g. image, text generation) 

4



Searching for (new) structures
General pipeline

• Finding new/unknown structures is not a supervised learning problem.

• Supervised problems can only help for the actual unsupervised problem.

• Defining the optimisation problem is problem specific at this stage. 

Nevertheless there are already general lessons.

• Four steps: 

1. Defining optimisation problem

2. Selecting the right data for solving the optimisation problem

3. Selecting a suitable architecture

4. Evaluating the result and connecting with other pipelines


• This approach is not limited to mathematical structures but also applies 
for phenomenological models.


• Advantage in mathematical data: no noise and detector effects 

5

Optimisation problem

Data selection

Architecture selection

Evaluation



Content
Examples of identifying mathematical structures with ML

• Today’s focus: unsupervised ML to look for finding symmetries and 
integrability in physical systems as a warm-up


• No direct optimisation available: Symmetries from embedding layer 
[arXiv:2003.13679]


• Symmetries from samples of phase space [arXiv:2104.14444]


• Towards new physics applications: integrability from samples of phase 
space [arXiv:2103.07475]
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Symmetries from embedding layer
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How to search for symmetries?
The problem

Krippendorf, Syvaeri 2020

Radial direction

1. How to find invariances? 
f(ϕ) = f(ϕ̃)

2. Which symmetry is behind 
such an invariance? f(x, y)

x y
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How to search for symmetries?
No direct optimisation available: embedding in deep layer

Krippendorf, Syvaeri 2020
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How to determine the symmetry?

1

1

G =

∑
0.00 °1.00
1.00 0.01

∏

Connected points in input space:

Which symmetry?

Krippendorf, Syvaeri 2020
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Symmetries from data 
(samples of phase space)
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Defining optimisation 
Predicting trajectories

Which problem are we interested in?

‣ How can we define an energy function whose 

minima result in appropriate models?

• From current particle position and momentum 

predict the next time step/change of position and 
momentum 
 
 
 
 
 

• Option 1: predict directly 

• Option 2 (domain knowledge): predict 

Hamiltonian and use auto-differentiation for 

·p, ·q

·p, ·q
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Optimisation problem

Data selection

Architecture selection

Evaluation

 p
q

 ·p
·q

Input Target

Model

Greydanus, Dzamba, Yosinski 1906.01563


 p
q

 ·p = −
∂H
∂q

·q =
∂H
∂p

Biased 
Model H

Auto-Differentiation

• Predicting Hamiltonian ensures 
physics bias of energy conservation


• Note: this optimisation problem is 
predicting a Hamiltonian without 
knowing the Hamiltonian in advance.



Can we learn more structures 
from samples of phase space?
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More structures from neural networks?

• If we can train NNs to find the Hamiltonian of a system, can we use it to learn other 
interesting structures?


• Symmetries of the system? E.g. via canonical transformations (cyclic coordinates 
reveal conserved quantities)


• How does this work? 2 key steps:

1. Formulate your physics search problem as an optimisation problem.

2. Make sure it’s learnable for your architecture.


• Good news for analytic understanding of numerical approximations: most physics 
functions are simple


• Interesting side effect: quantify how much these structures help in predicting 
dynamics
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AI for Simulations — Symmetries
Introducing physicists’ bias 

 p
q

 ·p = −
∂H
∂q

·q =
∂H
∂p

Biased 
Model H

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses: 
        
Additional constraint on motion (not just energy conservation), 
i.e. motion takes place on hyper-surface in phase space

0 = ·Fk(p, q) = {H(p, q), Fk(p, q)}

,  
(Input)
p q

• • Learning Symmetries

Training the neural network

14

{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444 15



AI for Simulations — Symmetries
Introducing physicists’ bias 

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 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• Poisson algebra:                and        

·Pi(p, q) = −
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= 0 ·Qi(p, q) =
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Benefits from Physicists’ Bias

• Conserved quantities interpretable: 
 

 

 



• Using learned conserved quantities helps in 
predicting trajectories

Pc1
= − 4.2px1

− 4.2px2
− 1.3py1

− 1.3py2
, Pc2

= − 0.9px1
− 0.9px2

− 3.2py1
− 3.2py2

L = − 1.1qx1
py1

+0.9qx1
py2

+0.9qx2
py1

−1.0qx2
py2

+1.0qy1
px1

−0.9qy1
px2

−0.9qy2
px1

+1.0qy2
px2
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Symmetries  Integrability→

Krippendorf, Lüst, Syvaeri 202118

Can we search for new mathematical/physical structures?



Integrability
A lightning overview

Krippendorf, Lüst, Syvaeri 2021

• Additional constraint  on motion: 
         
How many  can there be?


• System (2n dimensional) integrable iff: 
n independent, everywhere differentiable  
integrals of motion  (in involution).


• Alternatively search for Lax pair: 
             
s.t. eom are satisfied. Conserved quantities 
via: 
                 
(additional condition for )

Fk
0 = ·Fk = {H, Fk}

Fk

Fk

·L = [L, M]

Fk = tr(Lk)
{Fk, Fj} = 0

Example: Harmonic Oscillator 

• Hamiltonian and EOM: 

 ;     ,  

• Lax pair: 

   ,   


• Conserved quantities: 
     
     
     
         …


 

H =
1
2

p2 +
ω2

2
q2 ·q = p ·p = − ω2q

L = a (
p bωq

ω
b q −p ) M =

0 b
2 ω

− ω
2b 0

F1 = 2 λ
F2 = 2λ2 + 4H
F3 = 2λ3 + 12λH   spectral parameterλ…
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Integrability
A search problem with many examples and unexplored theory space

Krippendorf, Lüst, Syvaeri 2021

Beisert: Lecture Notes on Integrability (p17)

Applications: 
- Classical mechanics (e.g. planetary motion) 
- Classical field theories (1+1 dimensions) 
- Spin Chain Models 
- D=4 N=4 SYM in the planar limit 
- …
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We need some deus ex machina moment…



Formulating the search as optimisation
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Formulating the search as optimisation

• Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
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      ·L = [L, M] → ℒLax = ·L − [L, M]
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Formulating the search as optimisation

• Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
• Lax equation as loss: 

      ·L = [L, M] → ℒLax = ·L − [L, M]
2

• Equivalence to EOM (e.g. ):  has to include  in some component (LHS of EOM),  has to 
include RHS of EOM 

          ,      

        ,  

·xi = fi (xi, ∂xi, . . . ) L xi [L, M]

ℒL = ∑
i,j

min
k ( | |cijk

·L − ·xk | |2 , | | ·Lij | |2 ) + ∑
k

min
ij ( | |cijk

·Lij − ·xk | |2 ) cijk =
∑batch

·Lij

∑batch
·xk

ℒLM = ∑
i,j

min
k ( | | c̃ijk [L, M]ij − fk | |2 , | | [L, M]ij | |2 ) + ∑

k

min
ij ( | | c̃ijk [L, M]ij − fk | |2 ) c̃ijk =

∑batch [L, M]ij

∑batch fk

only fixed up to proportionality (loss function independent of refactor)
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min
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k

min
ij ( | | c̃ijk [L, M]ij − fk | |2 ) c̃ijk =

∑batch [L, M]ij
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• Avoiding mode collapse: 
         ℒMC = max (1 − ∑ Aij ,0)

• Total loss:  
                             ℒLax−pair = α1ℒLax + α2ℒL + α3ℒLM + α4ℒMC

only fixed up to proportionality (loss function independent of refactor)
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Applications
Harmonic Oscillator

• Harmonic Oscillator: 

                                                ;           


• Lax Pair: 

                                         ,   


• Consistency check: 

                                     


• Conserved quantities: 

                               

H =
1
2

p2 +
ω2

2
q2 ·q = p , ·p = − ω2q

L = ( 0.437 q −0.073 p
−0.666 p −0.437 q) M = ( 0.001 0.329

−3.043 −0.001)
dL
dt

= ( 0.437 ·q −0.073 ·p
−0.666 ·p −0.437 ·q) = (0.441 p 0.288 q

2.660 q −0.441 p) = [L, M]

L2 = (0.048618p2 + 0.190969q2 0
0 0.048618p2 + 0.190969q2) ⇒ trL2 ≈ 0.2 H
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Applications
Further systems

• Korteweg-de Vries (waves in shallow water): 
 
                


• Heisenberg magnet: 
 

       ,  ; constraint: 




• O(N) non-linear sigma models (Sine-Gordon equation and 
principal chiral model): 
 
                       ,     ,   . 

·ϕ(x, t) + ϕ′ ′ ′ (x, t) + 6ϕ(x, t)ϕ′ (x, t) = 0

H =
1
2 ∫ dx ⃗S 2(x) ⃗S ∈ S2

{Sa(x), Sb(y)} = ϵabcSc(x)δ(x − y)

ℒ = − Tr(JμJμ) Jμ = (∂μg)g−1 μ = 0,1
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Perturbations on integrable systems

• Harmonic Oscillator: 

        


• Are the following perturbations 
integrable: 
       ,    


• Initialise network at known solution for 
unperturbed system and see how it 
reacts to samples from perturbed 
system

H0 =
p2

x + p2
y

2m
+ ω2 (q2

x + q2
y )

H1 = ϵq2
x q2

y H2 = ϵqxqy

: non-integrableH1

: integrableH2

values for ϵ
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Conclusions

• ML search for new types of BSM physics requires search and identification 
of mathematical structures.


• ML to search for mathematical structures requires careful setting up of 
learning problem (loss, data, architecture, evaluation/integration)


• We can use ML to identify symmetries in an unsupervised way: embedding 
layer [no direct optimisation], phase space samples [energy functionals 
using classical mechanics knowledge]


• Road to making these ML search strategies useful: learning Lax pairs to 
identify integrability of system. Enables search for integrable perturbations.


• Symmetries are one example, talk to me for our work on extra-dimensional 
metrics or search for dualities.
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Thank you!
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For talks at the interface of physics and ML: physicsmeetsml.org

2104.14444: Simulations with Symmetry Control Neural Networks

2103.07475: Integrability

2003.13679: Symmetries from Embedding Layer


