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Motivation

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

Why are neutrinos massive?

What is the nature of dark
matter & dark energy?

What are the origins
of the LHCb flavour
anomaly?

Why is there more matter
than anti-matter?

GeV

Top pole mass M, in

Why is there more

matter than anti-

matter? Is the electroweak
vacuum stable?

How can the Higgs
boson be light when
the mass receives
large quantum
corrections?

What are the details
of cosmic inflation?



Motivation

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

* However, so far only negative
results in searches

CMS (preliminary)

Moriond 2021

137 fb™* (13 TeV)
pp — tt
t— t%9| Combination: SUS-20-002
0¢: arXiv:1909.03460;1908.04722,2103.01290
14: arXiv:1912.08887
2/¢ opposite-sign: arXiv:2008.05936
t— b)}f — bW*{?| Combination: SUS-20-002
04: arXiv:1909.03460;2103.01290
1¢: arXiv:1912.08887

t — (tX3/bX; — bWxY?) | Combination: SUS-20-002
0¢: arXiv:1909.03460;2103.01290
14: arXiv:1912.08887
t — bff'FY| 04: arXiv:1909.03460;2103.01290
t — bgF — bff'g?| 0 arXiv:1909.03460;2103.01290
t — cx?| 06 arXiv:2103.01290
t — by — bul — burx?| 26 arXivi2008.05936

pp — bb
b — bi?| 0 arXiv:1909.03460;1908.04722
b — tx7 — tW*0| 2/ same-sign and > 3¢: arXiv:2001.10086

PP — Qq
d — q¥¥| 0: arXiv:1909.03460;1908.04722
0¢: arXiv:1909.03460;1908.04722

Overview of SUSY results:

squark pair production

=05

=05

2( opposite-sign: arXiv:2008.05936 z=05

AM_; =5 GeV, BF=50%
AMg: =5 GeV, BF=50%

AM < 80 GeV (max. exclusion)
AM < 80 GeV (max. exclusion), z = 0.5

AM < 80 GeV (max. exclusion)

=05

Mgy =50 GeV

one light squark (i, d, &, or 3)

Gr +41(@,d,E,3)

0 250 500

750 1000 1250 1500
mass scale [GeV]

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise.
The quantities AM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate

sparticle and the LSP relative to AM, respectively, unless indicated otherwise.
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Motivation

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

* However, so far only negative
results in searches

* Make sure that we do not miss
potential discoveries at the LHC:
Use machine learning to
Improve existing approaches
and to inspire new ideas -
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W) Check for updates

Machine learning in the search for new
fundamental physics

and David Shih(»**

searches and neutrino experiments.

For several decades, the standard model (SM) of par-
ticle physics has provided a clear theoretical guide
to experiments, resulting in an extensive search pro-
gramme that culminated with the discovery of the Higgs
boson'”. Although the SM is now complete, there are
key experimental observations that compel the com-
munity to expand the search efforts for new particles
and forces of nature beyond the SM (BSM). For exam-
ple, the existence of dark matter (DM) and dark energy
is well established’, as are the mass of neutrinos** and
the baryon-antibaryon asymmetry in the Universe® —
yet none of these observations are explained by the SM.
Additionally, ‘aesthetic’ problems plague the SM, includ-
ing the unexplained weak-scale mass of the Higgs boson,
the existence of three generations of fermions, and the
minuteness of the neutron dipole moment’. Current and
near-future high-energy physics (HEP) experiments
have the potential to shed light on all of these funda-
mental challenges by creating new particles in the labo-
ratory, or by observing interactions of new particles with
normal matter or with other new particles.

This great potential for discovery comes with con-
siderable data challenges. New particle interactions are
expected to be rare, and their signature could be only
subtly different from the SM. This means that researchers
must collect and sift through an immense amount of
complex data to isolate potential BSM physics. Machine
learning (ML) offers a powerful solution to this chal-
lenge. Deep learning techniques (used here to mean
modern ML, with deep neural networks (NNs) and
other advanced tools that contain (much) more than

Georgia Karagiorgi®'®, Gregor Kasieczka?®, Scott Kravitz(»**, Benjamin Nachman(®34=

Abstract| Compelling experimental evidence suggests the existence of new physics beyond the
well-established and tested standard model of particle physics. Various current and upcoming
experiments are searching for signatures of new physics. Despite the variety of approaches and
theoretical models tested in these experiments, what they all have in common is the very large
volume of complex data that they produce. This data challenge calls for powerful statistical
methods. Machine learning has been in use in high-energy particle physics for well over a decade,
but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope
and ambition of research. These modern machine learning developments are the focus of the
present Review, which discusses methods and applications for new physics searches in the context
of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event

tens of thousands of tunable parameters) are well suited
for analysing large amounts of data in many dimensions
to find subtle patterns. Multivariate analysis has been
commonplace in HEP for decades (for example, the
TMVA ‘toolkit’)’, but the latest tools will qualitatively
extend the sensitivity to ‘hypervariate analysis’ whereby
the entire phase space of available experimental infor-
mation can be analysed holistically. These new tools
also allow for new analysis strategies independent of
the dimensionality (density estimation, variable-length
inputs and so on).

In tandem with the growing data volume, a related
challenge is the increasing need for efficient (in terms
of computational time, power and resource utilization)
and accurate data processing for high-throughput appli-
cations. Efforts to that end include the development
and acceleration of deep learning-based processing
algorithms on power-efficient hardware platforms’.

In addition to the growing data challenge, there is also
the compounding challenge of simulating expectations
for what experiments may observe. HEP experiments rely
heavily on simulations for all aspects of research, from
experimental design all the way to data analysis. Built
on a thorough understanding of the SM and the funda-
mental laws of nature, these simulations are extremely
comprehensive and sophisticated, but they are still only
an approximation to nature. It is therefore often necessary
to combine simulations with information directly from
data to improve simulation accuracy. The corresponding
ML models must be robust against inaccuracies and be
able to integrate uncertainties.
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Despite the same title, this talk will be
more focused on LHC physics and on
recent work than our review (2112.03769)

Outline

¢ |mprove existing approaches:

e Better performance for new physics
taggers

® |ncrease stability
e New ideas:

e Build model independent searches

See Danilo’s excellent talk from
Monday for a big picture view of
computing challenges in the future



https://indico.cern.ch/event/1106990/contributions/5021254/attachments/2533470/4359744/Software%20and%20Computing%20in%20the%20HL-LHC%20and%20EIC%20eras%20and%20beyond_v2.pdf
https://indico.cern.ch/event/1106990/contributions/5021254/attachments/2533470/4359744/Software%20and%20Computing%20in%20the%20HL-LHC%20and%20EIC%20eras%20and%20beyond_v2.pdf

Improving
Performance
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Improvement of factor 2-3 over

shallow ML (and more over non-ML

methods) in benchmark classification task

GK, Plehn (eds), et al, 1902.09914

: Deep Learning

Example application: hadronic top
quark decays

1.2M simulated top quark and
background events

Either four-momenta of individual
particles or high-level features

Great test-bed to compare different data
representations

 (and, of course, useful for new
physics searches)



Architectures

 Basic motivation: Use physicists’
knowledge about data as an implicit (or
explicit bias) to help networks train faster /
achieve better performance




Architectures

 Basic motivation: Use physicists’
knowledge about data as an implicit (or
explicit bias) to help networks train faster /
achieve better performance

* Either by phrasing physics problems
so that outside-solutions can be used ...

Feature Feature Feature Feature Hidden Hidden Hidden
Inputs maps maps maps maps unlts unlts umts Outputs
1@40x40 8@39x39 8@38x38 8@18x18 8@17x17
MaxPooling
Convolution Convolution Convolution Convolution Flatten Fully Fully Fully
4x4 kernel 4x4 kernel 4x4 kernel 4x4 kernel connected connected connected

Very simple convolutional architecture, using
locality and translation invariance.

GK, Plehn, et al, 1701.08784; Macaluso, Shih,
1803.00107; ...



Architectures

 Basic motivation: Use physicists’
knowledge about data as an implicit (or
explicit bias) to help networks train faster /
achieve better performance

* Either by phrasing physics problems
so that outside-solutions can be used ...

e ...or by constructing networks layers based

on physical symmetries

Input vectors Particles Boosted particles Features

7

W=pu+ty,
Puv * Pw
cos(0*) = FE
p uv - Pw
w
b H
H i w!
v, 1 Rest frames
lr=b+ p+y, L
—— ——
Trainable Lorentz
weights boosts

(2-M-N) |

Learn combinations of particles and suitable

GK, Plehn, et al, 1707.08966; Erdmann et al 10 rest frames
1812.09722; Bogatskiy et al 2006.04780; ...



Architectures

 Basic motivation: Use physicists’
knowledge about data as an implicit (or
explicit bias) to help networks train faster /
achieve better performance

* Either by phrasing physics problems
so that outside-solutions can be used ...

e ...or by constructing networks layers based
on physical symmetries

e Graphs are a general + powerful
framework that captures relevant
properties for particle tagging

e e.g. best performance of ParticleNet in
original top tagging comparison

e versatile and well suited

Henrion et al ML4PS 2017; Qu, Gouskos
1902.08570; Shalom, Battaglia, Valiant
2007.13681 (review)
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Edge block Node block

Nodesi £.9. per-particle features

Global block

Edges: e.g. geometrical distances



In practice

107 T T T
>
-3
W ATLAS Simulation Preliminary ParticleNet
108 Vs =13 TeV, Pythia8 PFN —
anti-k;, R=1.0 UFO SD jets DNN
105 |, pr> 350 GeV, |n[<2.0, m> 40 GeV hIDNN —
EFN
4l \ ResNet50 |
10 better
10%— —
10" — —
10— —
10~/ ' ' '
0.0 0.2 0.4 0.6 0.8 1.0
cC:sig

Background efficiency

—
1

—
<

1072

107°

Simulation Preliminary
Top quark vs. QCD multijet

500 < pie" <1000 GeV, n®*" <2.4
105 < mg, <210 GeV

better -
— DeepAKS8 .
ParticleNet

-4
10 0

0.1 02 03 04 05 06 07 0.8
Signal efficiency

Both ATLAS and CMS confirm performance of
graph-based (ParticleNet) approach on realistic

simulations

CMS 2004.08262; CMS DP -2020/002; ATL-
PHYS-PUB-2022-039

12



Use of object tagging

W+, 7. H
* Top tagging (+other heavy resonances,
flavour, tau,...): standard model particles Tays bt t
e Still important for BSM searches
LTopp
b,t,t
W-,Z H
QMS Preliminary 137 1o (13 TeV)
o { Data mQcD
18000F —TT (1.2 TeV) ' TOP
160001 Y Bkg. uncert. [l EW
14oooj—_ elu+jets
12000 DeepAKS8 CR
10000;—
8000;—
6000

4000
2000 —
CMS B2G-20-011 (just an example; majority of . ot . = H. . 2. W b

. DeepAKS jet tag
searches uses flavour/resonance tagglng as

ingredient) 3



Tagging other particles

* Top tagging (+other heavy resonances,
flavour, tau,...): standard model particles

_________________________________________________________

e o OLclass/OW OLclass/OW  { L
o Still important for BSM searches Input features 1D convolutions  Dense
Charged PF sl SISl S
candidates | = [E||E||E||E| > alll e dlcttet
* Relatively easy calibration e BN . L (b"d‘
. . Neutral PF - § § é é g é = :‘E ‘8_ ,8_ g: Li_P)’
(signal & background samples in data oo |~ GIEIENE] 8] 8]
eXISt) Serct:pndary L g g g g - § _% fense
For new physics: background “xE S il i ey
. . . . > s 218 (simulation,
calibration possible, larger uncertainty . | cata)

reversal

L] a0
on signal .« ]
::\ | _)\aLd“"l‘din/aLﬁ : - ' ! (:s 0 domain
=
L)

Gradien

—> Forward IL_-_:-_': Backward Feature [ e P pomain
propagation ) propagation extraction prediction prediction

Example for domain adaptation

CMS 1912.12238; ... 14



Tagging other particles

* Top tagging (+other heavy resonances,
flavour, tau,...): standard model particles

L=

-2
e Still important for BSM searches 2 10
3 __________
* Relatively easy calibration S10734 || o L T
. . ©
(S|gnal & background samples in data g .
exist) E
For new physics: background S 105 after cut, DisCo
calibration possible, larger uncertainty
on signa 1075 100 150 200 250
e (Can assume all properties (mass,..) mass [GeV]
For new physics: Parametrised o 5 o
networks or decorrelation L = Lelassifier (¥, Ytrue) + AdCorry  _o(17,9)

/

Add term to loss function to
decrease correlation with specific
observable (e.g. invariant mass)

GK, Shih 2001.05310; Louppe, Kagan, Cranmer
1611.01046; Shimmin et al 1703.03507; Bradshaw

et al 1908.08959; Dolen et al 1603.00027; Kitouni et 15

dCov3(X,Y) = (| X — X'||lY = Y'|)
+ (X = XY = Y|)
—2(]X - X'|]Y = Y"))

dC0V2(X Y)

2 9
X.Y)= Y. Y
dCorr“(X,Y) dCov (X, X)dCov(Y,Y)

al 2010.09745, ...




Estimating Backgrounds

 (Can take decorrelation further.
* For new physics searches, need to C A

e Find two variables that:

* |solate a possible signal &

* Are independent D B
(and can be used for
ABCD background estimation)

Q —

f—

 (Can phrase this directly as training task,
again using DisCo NpNe
Ny =
Np

£[f> g] — Eclassiﬁer[f(X)a y] =+ Lclassiﬁer [Q(X), y] =+ A dCOI’I‘;ZO [f(X), Q(X)]

GK et al 2007.14400; See also Mikuni,
Nachman, Shih for decorrelating autoencoders: 6
2111.06417



Back to

|7



Attention is all you need

L blocks

* |n ParticleNet, data-space geometry ) e
defines neighbourhood in graph; . %[ } ....... ptenion
. ' g x? Bloc x! Bloc xL- Bloc Eleck
aggregation over all neighbours &)t +
SN | ILCHS I S
e Attention allows the network to learn g
which parts of the input are truly \ %
relevant A -
)
e Attention is data-hungry, Y
transfer-learning helps! VT—2%
O
. .
Accuracy AUC  Rejsoy, Rejson o
(Linear) (Linear) (Linear)
081 | : 388 | 0\ ) )
ParticleNet 0940 09858 397+7 1615+ 93 1 g
(b) Particle Attention Block (c)cgisass Attention Block
ParT architecture diagram
ParT 0.940 0.9858 413416 1602 £+ 81 Perf .
ParticleNet-f.t. 0942 09866 487+9  1771+go I SMOMMaNce comparison on
ParT-f.t. 0.944 09877 691+15 2766+130 |landscape dataset

Vaswani et al 1706.03762; Qu, Li, Qian
2202.03772; Mikuni, Canelli 2001.05311; ..

|18



Attention is all you need

* In ParticleNet, data-space geometry
defines neighbourhood in graph;
aggregation over all neighbours

e Attention allows the network to learn
which parts of the input are truly
relevant

 Attention is data-hungry, Accuracy ~ #params ~ FLOPs

transfer-learning helps! PFN 0.772 86.1k  4.62M
(Motivation for foundation models?) P-CNN 0.809 354k 155M
ParticleNet 0.844 370k 540 M

e So far, observed trend: ParT 0.861 2.14M  340M
Higher phySiCS perfOrmance comes at the ParT (plaln) 0.849 713 M 2760 M

cost of higher algorithm complexity &

compute cost (plain: standard multi-nead-attention vs particle-

multi-head-attention)

Vaswani et al 1706.03762; Qu, Li, Qian

2202.03772; Mikuni, Canelli 2001.05311; Gong

et al 2201.08187 for a combination of

transformers and attention; 19


https://indico.cern.ch/event/1106990/contributions/5075335/

Attention is all you need

* In ParticleNet, data-space geometry
defines neighbourhood in graph;
aggregation over all neighbours

e Attention allows the network to learn
which parts of the input are truly
relevant

Accuracy #params FLOPs

e Attention is data-hungry,

transfer-learning helps! PFN 0.772 86.1k  4.62M
(Motivation for foundation models?) P-CNN 0.809 354k 155M
ParticleNet 0.844 370k 540 M

e So far, observed trend: ParT 0.861 2.14M  340M
Higher phySiCS perfOrmance comes at the ParT (plaln) 0.849 713 M 2760 M

cost of higher algorithm complexity &

compute cost (plain: standard multi-nead-attention vs particle-

multi-head-attention)
e |s this the only way?

Vaswani et al 1706.03762; Qu, Li, Qian

2202.03772; Mikuni, Canelli 2001.05311; Gong

et al 2201.08187 for a combination of 20
transformers and attention


https://indico.cern.ch/event/1106990/contributions/5075335/

Looking for optimal feature set

 Energy Flow Polyonomials (EFPSs)
form a basis of jet substructure

* Depending on order considered,
too many (e.g 7Kk) to efficiently train NN
(many features work if there is structure,
not so much for EFPs)

e Solution: lterative feature selection,
again based on DisCo /
St

Start with an
initial set of
known features

Step 2: Find subset

data points X, where
the classifier is most

epl: Train a neural
network on the
known features and

obtain a classifier. confused

Step 4: Add the Step 3: Rank the
feature with the features based on the
highest score to the value of a score,

Repeat until the
chosen
performance
metric saturates

initial set of known , on that
features subset X,

Das, GK, Shih, to be published; Faucett, Thaler, 21
Whiteson, 2010.11998



Looking for optimal feature set

Energy Flow Polyonomials (EFPs)
form a basis of jet substructure

Depending on order considered,

too many (e.g 7Kk) to efficiently train NN
(many features work if there is structure,

not so much for EFPs)

Solution: Iterative feature selection,
again based on DisCo

Same top tag performance
as simple graph network but
only O(10) inputs; factor 50

o

2400 A

2000 A

1600 -

low-level feature taggers
high-level feature taggers

Disco-FS on EFPs .ParticIeNet—Iite

Lorentznet
©

ParticleNet ParT
D @

o 1200 A , ResNeXt
less parameters oreeNiN DNN EFPs
PFN CN
. - 8 Nsubp @ ‘.
* Also helps interpretability, 800 A 6 Nsub ¢’ ¢ LBN
. . ® P-CNN
calibration s R EFN
400 - TopoDNN
* Useful for new physics searches? &PA
0 SR | LI LS SRS R
103 104 10° 106
Das, GK, Shih, to be published; Faucett, Thaler, - FeTaELErs

Whiteson, 2010.11998




Model Independent

Searches

23



Anomaly Searches

* Orthogonal strategy to model
specific searches:

* Discover new physics
with making minimal assumptions

* |Less sensitive to one specific model, broader coverage

ML-assisted global comparison Resonant anomaly detection /

e Systematically compare simulation to Enhanced bump hunts
recorded data, look for differences ¢ Estimate background in-situ from

¢ (Con: Rely on imperfect simulation, data
maximally background model e (Con: Need to make assumptions
dependent about signal shape

e Pro: Sensitive to all types of e Pro: Data-driven on background
anomalies model

GK et al 2101.08320; Arrested et al 2105.14027; 24

CMS 2010.02984; ATLAS 1807.07447



Anomaly Searches

* Orthogonal strategy to model
specific searches:

* Discover new physics
with making minimal assumptions

* |Less sensitive to one specific model, broader coverage

ML-assisted global comparison Resonant anomaly detection /
e Systematically compare simulation to Enhanced bump hunts
recorded data, look for differences ¢ Estimate background in-situ from
¢ (Con: Rely on imperfect simulation, data
maximally background model e (Con: Need to make assumptions
dependent about signal shape
e Pro: Sensitive to all types of e Pro: Data-driven on background
anomalies model
e Will focus on these for rest of the
talk
e See Andrea tomorrow for an
alternative view
GK et al 2101.08320; Arrested et al 2105.14027; 25

CMS 2010.02984; ATLAS 1807.07447


https://indico.cern.ch/event/1106990/contributions/5037074/

Resonant Anomaly Detection

Ccoun éS

26



Resonant Anomaly Detection

+~q<(c{ ‘t(?ww( C(}thskm
(n'n (I)cyw eral CO/rc.(.QlEJ ikl W)>

27



Resonant Anomaly Detection

a4
LOD(C (}df o S"N(L Sk‘ntL)
LDCQbSCJ /0 m, aM‘ C(:((WNL

SL\«PQ e O'L(ﬂt/ (;ql‘V/CS

28

Need to find a feature
iIn which signal is resonant
and background smooth.

No assumptions in other
features.

Further generalisation as
open issue.



Resonant Anomaly Detection

Ccowun éS

é"' L““”&CJ ‘)Wap*‘nun‘li Uie ML
'/‘o ‘I)a':u c(«c;}@(r R\X) Co ]L(M_L No worry, will come back to HOW

this is done is a moment
S L(,&clt"‘j E\Zé =c e_ﬂ(ncehee) S?CrVNL
(’Va c£¢‘°ﬂ

29



Resonant Anomaly Detection
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...S0 HOW to construct the anomaly
score?

31



Compressed
representation
Latent space

107!
1072
1073

L(z) = [lx = go(fo(2))|]2
a(x) = L(x)

 Use that autoencoder approximates
background density

* Loss = anomaly score

* Proof of concept on top tagging
dataset

Heimel, GK, Plehn, Thompson, 1808.08979;
Farina, Nakai, Shih, 7808.08992; ATLAS

application: ATLAS-CONF-2022-045; ... 32
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Autoencoders

L(z) = ||z — go(fo(z))l]2
a(x) = L(x)
* Upside: Powerful, conceptually

simple, useful for trigger?
* Downside: Complexity bias

Weber MSc Thesis Hamburg 2019, Finke et
al 2104.09051,..

33

Number of Samples

Number of Samples

1800

1600

1400

1200
1000
800 |
600 [
400 -

200 H
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1000

800 -

600 -

400

200 |-

0% Top

- Signal
I { Background

-/ - Only QCD for training
[

-
.-
" . L i

! e o e
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Loss

100% Top

J ,:L Signal
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Autoencoders

L(x) = ||z —go(fo(2))l]2
a(x) = L(x)

* Upside: Powerful, conceptually
simple, useful for trigger?

* Downside: Complexity bias
(Overcome e.g. by normalised auto
encoders)

Yoon, Noh, Park 2105.05735; Dillon et al 34
2206.14225

3.0 1

2.5 1

2.0 1

1.5 1

1.0 1

0.5 1

0.0

x10°

top tagging

Only QCD for training

QCD

AN

1075
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2.0 1

1.5 1
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0.5 1

QCD tagging

Only top for training
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0.0

1075



Autoencoders

Non-Linear Transformation: Y = eX

: Px
20000¢ Py
% 15000}
= |
s L
o I
O 10000}

£(a) = ll2 - gol (el 2
| Nl V.

CL((E) — ,C(LE‘) 0 —55=5.5 0.0 25 50 75 100 12.5

Random Variable

* Upside: Powerful, conceptually
simple, useful for trigger?

* Downside: Complexity bias
(Overcome e.g. by normalised auto
encoders) —— (mi,m;) NF (077)
lll-defined density under coordinate oy T

[ -+ (log(m;), log(my)) AE (0.36)

change (s, ma) CWoLa (0.9
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Lan, Dinh, 2012.03808; GK et al, 2209.06225



CWolLa

Mixed Sample 1 Mixed Sample 2
N (

OO | | ®O®O®
OlOIOIOO, @O®GG * A classifier (i.e. a neural network) trained
OO | OCG®OG®® stinqui -
to distinguish two mixed samples learns
OOOO6 ®OOO® to distinguish the components
@GOG | 0CGG®®
) ) ’  But needs S/B from same underlying
0 1 distribution (e.g uncorrelated) between
mixed samples 1 and 2
Classifier (does not hold in general)
7 oy fivs+ (A= fiyps  fiLlsp+ (11— f1)
Ml/M2 T

b, feps+(1— fo)pe  foLg/p+ (1 — f2)

Metodiev, Nachman, Thaler, 1708.02949; Howe, 36
Nachman 1805.02664



CATHODE

Train generative model
here

—and sample here

SB § SR §

Pdata(z|m € SB)

ata(x|m € SR
— poglalm € 5B)  Panalelm €50

>

SB m

Pdata(z|m € SB)
= prg(x|m € SB)

Hallin, Isaacson, GK, et al 2109.00546; Nachman, 37
Shih 2001.04990; Raine et al 2203.09470

1) Train a generative model p(x|m) on auxiliary features in SB
« 2) Sample from p(x|m) in SR. Designate as pogest.



Train generative model
here

Generative Models: Use cases in Fundamental Physics

Amplification Amortised Generation Differentiable
of statistics computation from detector data models

[V
I s

» Strong inductive bias of ¢ Minimisation of local * Unsupervised training on « Optimisation of
architectures help computing resources by real events instead of experimental setup
models to learn upfront central model tuning Monte Carlo based on explicit data
underlying manifold training simulations likelihood

* Powerful data » Storing model weights ¢ |.e. for estimation of * Backpropagation
augmentation technique instead of data background densities through analysis chain

"
\

Remember
Sascha’s talk
~a from yesterday

—and sample here

16.09.2022
i | >
SB | SR | SB m
pdata(x|m < SB) pdata(x‘m € SB)
ata(xlm € SR
= prglzlm € SB) Pt (2] ) Prg(zlm € SB)

1) Train a generative model p(x|m) on auxiliary features in SB
« 2) Sample from p(x|m) in SR. Designate as pogest.

Hallin, Isaacson, GK, et al 2109.00546; Nachman, 38
Shih 2001.04990; Raine et al 2203.09470



CATHODE

(f Pbg,est. ‘\

Background only

BRI
1o wtRag, oo
LY R

-

-

Pdata

Background +
potential signal

X

a

o ook,
o g .
:‘:‘s PN °

Y AR

v

~

J

. , )
0
Classif

1
ler

Hallin, Isaacson, GK, et al 2109.00546;: Nachman,
Shih 2001.04990; Raine et al 2203.09470
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1) Train a generative model p(x|m) on auxiliary features in SB
« 2) Sample from p(x|m) in SR. Designate as pogest.
3) Train binary classifer between pgata and pog,est.



CATHODE

Signal Region
20.0
—— Supervised
2 — |dealized AD
S ' — CATHODE
GE) oo CWola
3 i N —— ANODE
i b
: e | No~. random
Q- -
E 10.0-
(O
(@]
C
2 A
g / :
5 5.0 / N \
2.5 -
\\\ .
0.0 L APPPPTTTRTTIILL s e | | I
0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)

1) Train a generative model p(x|m) on auxiliary features in SB
2) Sample from p(x|m) in SR. Designate as pog,est.

3) Train binary classifer between pdata and pPog,est.

4) Evaluate score, use in enhanced bump hunt

Hallin, Isaacson, GK, et al 2109.00546;: Nachman, 40
Shih 2001.04990; Raine et al 2203.09470



La(tent) CATHODE

JUST ONE
) MORE THING..

Hallin, GK, et al, coming soon

If R(X) is only calculated in signal
region, it’s extrapolation behaviour
Is not well-defined

Potential problem for bump-hunt if it
shapes distributions

AR dataset (bkg-only training), selecting 1%

full bkg
------ SR —— CATHODE




L-aCAT-HODE

Lower Sideband Signal Reg: Upper Sideband

— ww * If R(x) is only calculated in signal
region, it’s extrapolation behaviour
Is not well-defined

log(counts)
g
2
g

log(counts)

ﬁ ﬁ * Potential problem for bump-hunt if it

shapes distributions

X

|
XO

X1 A

!

% e (Can overcome by training the
| #09m)  sample of z-N(0,1) R@>R, | | classifier in latent space instead

. “ @ & @
\ J ’ & AR dataset (bkg-only training), selecting 1%
III. 5 P

" v.|

Xo

f(x m) f(x m) f(x m)
] full bkg ~—— CATHODE
II. Classifier —— |R@ = ;b;((zz)) ‘\ X Xo % 100_E """ SR —— LaCATHODE
> 1071 4 T
d 3 C
; s
51072 ;
2 1073 - ]
) 3
107 5
42 2 3 4 5 6 7 8 9

Hallin, GK, et al, coming soon



LaCATHODE

Lower Sideband Signal Reg: Upper Sideband

— ww * If R(x) is only calculated in signal
region, it’s extrapolation behaviour
Is not well-defined

log(counts)
g
2
g

log(counts)

ﬁ ﬁ * Potential problem for bump-hunt if it

shapes distributions

X

|
XO

X1 A

!

% e (Can overcome by training the
| #09m)  sample of z-N(0,1) R@>R, | | classifier in latent space instead

. “ @ & @
\ J ’ & AR dataset (bkg-only training), selecting 1%
III. 5 P
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Hallin, GK, et al, coming soon



Closing
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Closing

* Machine learning aids new physics searches by improving existing
approaches and opening up new techniques

 (Convergence of architectures - share foundation models?
 Understanding and dealing with correlations
 Generative models as in-situ background estimators

* Rapid pace of innovation, still no end in sight

Thank you!




Bonus Material
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Online Learning

47



Emphemeral Learning

e CMS/ATLAS triggers:

 Only able to store a subset (<1 in 10.000) of events

 Possible (wild) alternative:

* Train a generative model online during data taking

No compression Compress per event Compress entire dataset

Many numbers per event Small set of Small set of numbers
numbers per event per dataset

* Fixed size, independent of training data amount

* Radically different format from usual way of storing data, but
might open up new approaches

2202.0937 48
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OnlineFlows

Online Offline
"""""""""""""""""" . '4"'-"""""'~
. 4
1 [ |
1 |
ONLINEFLOW |  9enerate =
1 synthetic
. events |
Iﬁ
: .
. :
Measurement '
¢ f ' :
\ RO _( LVL1 Trigger) : :
1 1
\ * . :
HL Trigger ' : Analysis
1 1
OL ! !
e © . save |
</ : few :
: events :
1 \

-------------------------------
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Schematic of proposed
approach.

Focus on HLT, more
technical challenges
for use in hardware
Trigger.

Main problem:

How to make training
work if each event is
only available for short
time?



Proof of concept

Use LHCO dataset,

train on high-level
features on a mixture of Z.o
background (99%) and -0

signal (1%).

8.0 1

0.0

3.

><104 ><104
—— Data 3.0
—— ONLINEFLOW
10x Signal 2.0 1
=== Signal Region ®r20 §2
| - =
= =
S S 1.0 1
| | 1.0 :
ﬂ 0.0 ‘ ‘ ‘ 0.0 ‘ ‘
00 3.25 3.50 3.75 4.00 0.00 0.25 0.50 0.75 0.0 0.5 1.0
m;; [TeV] my [TeV] my — my [TeV]
XlOJ‘ X103
1.0 8.0
0.8 1 6.0
£ 2z
: :
3 0.5 3 4.0
© S
0.2 1 2.0
0.0 - - - - 0.0 : . .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
o) -2
21 21
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Proof of concept

Use LHCO dataset,
train on high-level
features on a mixture of
background (99%) and
signal (1%).

Train classifier to
distinguish a signal
region and sideband
(CWoLA appaorach)

Compare procedure
directly carried out on
data with output of
flow.

18 1% Signal
— 100% Data

16 1
- —— 50% Data
q;) 14 —— 20% Data
% 5% Data
£ 10 ONLINEFLOW
S 89 -
S -
I~
S
=
20 4 -
N

21

0 . . . .

0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)
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On Anomaly Detection
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Types of anomalies

Outliers/Point anomalies: Datapoints far away
from regular distribution

Examples:
e Detector malfunctions

 Background-free search

Group anomlies: Individual examples not
interesting,

but signal is an overdensity with respect to
background

Examples:

e Resonance searches

e Transient signals in time series s { SR i 8B m
pdata(x‘m S SB) pdata(as\m c SB)

ata(x|m € SR
= pbg(x|m € SB) Pdatal(| ) = pbg(:c|m € SB)
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Assumptions

Rarity: Pr(anomaly) « Pr(hormal)

Overlap:
max x p(x|anomaly)/p (x|normal) < o

Resonance: Pr(|m —-m0| > §lanomaly) = O for
some feature m (often a mass) and fixed m0,
%)

Smoothness: p (x|m, normal) varies slowly

>

with m so that one can use data with s { SR | SB m

. Pdata(T|m € SB) T Pdata(z|m € SB)
Im — m0| > & to estimate p(x|m,normal) for ~mgloim e 55)  Pua(m €SB i ¢ )
lm —m0| < 6

54
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Introducing: LHC Olympics

* Encourage development and comparison of model-
agnostic search strategies
* Focus on group anomalies, data-driven searches
« Use for a convenient overview of space of techniques
 Complementary to 2105.14027

* Provide a complete package, balance details vs

accessiblity Welcome to the home of the LHC
Olympics 2020!
e Datasets:
* One R&D dataset for algorithm development
* Three black box datasets (BB1-BB3)
« Unblinded over time

e Timeline:
« Spring 2019: Release R&D dataset (link)

e Autumn 2019: Release BB datasets (link)

« January 2020: Winter Olympics as part
of ML4Jets, unblinding of BB1 (link)

 July 2020: (Virtual) Summer Olympics, unblinding of
BB2 and BB3 (link)

 LHC Olympics paper (https://arxiv.org/abs/
2101.08320) public

https://Ihco2020.github.io/homepage/

55
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https://zenodo.org/record/6466204#.YoydSpNBxqs
https://zenodo.org/record/4536624#.Yoz_7pNBz0o
https://indico.cern.ch/event/809820/sessions/329216/#20200116
https://indico.desy.de/event/25341/
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2101.08320
http://www.apple.com/uk

100k signal examples (signal, see Feynman diagram

on the right)
Labels provided

Relatively simple signal

R&D dataset

For building and testing methods
1M background examples (Standard Model),

 Known to differ in previously mentioned
features from background distribution

Unrealistically high S/B

| LHCO02020
., £0000¢ my,, anomaly ]
S 30000} Am;, anomaly |
= 20000} O my,, normal
(@]
© 10000} [0 Amj, normal
0%.0 02 04 06 08 10
Feature
30000 — LHC02020
» 25000} T71 1, anomaly [0 Tp1,1, normal -
E 20000¢ T21, 2, anomaly [0 T21,2, normal 1
2 15000¢ -
g 10000} :
5000 :
000 02 04 06 08 10
Feature
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Collisions per bin

m=100 GeV

105 | | | LI.HCOZOIZO
SS: SR §§ - Fit(KSp= 0.60
~~~~~~ Normal
104 [ Anomaly
103 I
102}
A

2500 3000 3500 4000 4500 5000

m

2107.02821



Generative models
for anomaly detection

>

SB § SR § SB m

Pdata(z|m € SB)
= prg(x|m € SB)

pdata(x|m € SB)

ata(xlm € SR
— poglalm € 5B)  Piaald] )

* 1): Choose one feature (m) in which to search for resonances

57
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

>

SB § SR § SB m

Pdata(z|m € SB)
= prg(x|m € SB)

Pdata(|m € SB)

ata(x|m € SR
— puglalm € 5p)  Piswelrl € ST

* 1): Choose one feature (m) in which to search for resonances

e 2): Use m divide spectrum into non-overlapping regions. Designate one as
signal region (SR), others as sidebands (SB). Repeat the following for all
choices of SR

58
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

>

SB § SR § SB m

Pdata(z|m € SB)
= ppg(x|m € SB)

Pdata(z|m € SB)

ata(x|m € SR
pdt( ‘ ) :pbg(l’|m€SB)

 3) Train a generative model p(x|m) on auxiliary features in SB
(used MAF, other choices including GAN/VAE possible as well)
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

—and sample here

>

SB § SR § SB m

Pdata(z|m € SB)
= ppg(x|m € SB)

Pdata(z|m € SB)

ata(x|m € SR
pdt( ‘ ) :pbg(l’|m€SB)

 3) Train a generative model p(x|m) on auxiliary features in SB
 4) Sample from p(x|m) in SR. Designate as pogest.

2109.00546
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Generative models
for anomaly detection

( Pbg,est. \ ( Pdata )

Background only Background +
potential signal

xu . . :L‘“

®30 224 .o
¢ '?..:f"vg'-

. . . )

( Classifier 6

 3) Train a generative model p(x|m) on auxiliary features in SB
 4) Sample from p(x|m) in SR. Designate as pog,est
e 5) Train binary classifer between pdata and pog,est.

. ‘da
o ,E*“

61

2109.00546



Generative mode

Is

for anomaly detection

20.0

17.5 -

e | &
12.5 4

— S
10.0 A

|

— 7.5

2
o 5.0 -
2.5
0.0

)
4)
)

Signal Region

15.0 A

—— Supervised

ours

— CATHODE:
Classifying Anomalies
THrough Outer Density
Estimation

Signal Efficiency (True Positive Rate)

3) Train a generative model p(x|m) on auxiliary features in SB
Sample from p(x|m) in SR. Designate as pog,est.
5) Train binary classifer between pdata and pog,est. (Mixed sample classifer)

6) Cut on high classifier scores to enrich sample with anomalies
(and perform statistical analysis)
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Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)

B

Px(_ )
f
. pz(2)

63

2012.03808 (Lan & Dinh)



Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features

164 . e Random
—— Default, val loss = 0.69277+0.00002
—— 1G, val loss = 0.69302+0.00005
—— 2G, val loss = 0.69316+0.00003
—— 3G, val loss = 0.69328+0.00003
—— 5@, val loss = 0.69338+0.00007
7G, val loss = 0.69352+0.00005
10G, val loss = 0.69389+0.00012

14 ~

= =
o N
1 1

Significance Improvement
(o]

6

4

2 1 =SS\

N
OiO 012 Oj4 Oj6 018 le

True Positive Rate
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Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features

e Need also consider

Shaping of distributions under tigher anomaly detection cuts
Cost of signal-injection in training on data

How to efficiently estimate / compare / communicate sensitive
regions of different anomaly detection algorithms

Make data-based anomaly detection more flexible
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Challenge datasets

* All contain total of 1M examples; might contain signal;
no labels provided during ‘content’ phase (labels available no)

 All used different simulation parameters for background (to avoid
unrealistic exploits)

BB1: 834 signal examples BB2: empty BB3:
Same event topology as R&D

. 4 Dijet signature 9
dataset, different masses

might be easy?

m=378 GeV ¢ q Y
Y

q
m=3.823 TeV

/
4 d  Trijet signature 9

X

m=732 GeV q
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& Friends

e Situation seems better for density ratio based techniques (CWola, ANODE,
CATHODE,..)

Per Neyman-Pearson: Likelihood-ratio is

p(x|anomaly)

optimal test statistic LS B =

Unfortunatly, p(x|anomaly) is not available / p( T ‘ normal)

Build data/background ratio: 7 . p(ZE )
e p(x|normal)

Approximate background density using r - p ($ )

control measurement (e.g. sideband) IBlIs] ﬁ(a: ‘ normal)

Expand p(x) = fnormal p(a:|normal) g fanomaly p(:c|anomaly)

p(x|anomaly)

And insert: L D / B~ fnormal e f anomaly ~ <
p(x|normal)

e However...
67



