
TOWARDS
ZERO-WASTE COMPUTING
Ana-Lucia Varbanescu
a.l.varbanescu@utwente.nl

Computing is everywhere … and it’s not free!
• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways
• A consumption increased by 80% in 3 years

• The ICT sector will reach 21% of the global energy consumption by 2030

We (=big science) are part of this!

We must act to improve the energy efficiency of
computing!

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Three types of stakeholders

Developers and users
Improve the energy efficiency of
their own codes, making use of
algorithmic, programming, and
hardware tools
Design and implement
applications able to adapt to the
available system resources

System integrators
Offer the right mix of resources
for the application developers and
system operators.
Include efficient hardware to
enable different application mixes.

System operators
Ensure efficient scheduling of
workloads on system resources.
Harvest energy where
resources/systems are massively
underutilized.

Agenda
• From performance to waste in computing

• Performance Engineering in a nutshell

• N Case-studies
• N <= 3

• Towards Zero-waste computing

Why care about compute performance?
As an (impatient) user …
• Your application is not responsive
• Your simulation is not ready in time
• Your data is not fully processed
• …

Just buy a newer/bigger computer !
Run it “in the cloud” !

Or ask Stephen, he’s a computer scientist !

Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing is compute waste.

Why care about compute performance?
As a (mindful) user/developer …
• Must be aware of how you use computing resources

• Reduce waste in computing
• Must be proactive about performance

• If someone else needs to do it, it is already too late …
• Must argue for a more sustainable answer than more hardware

We all can and must improve software and hardware
efficiency to minimize waste in computing!

Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing is compute waste.

To reduce compute waste, we must shift from
time-to-solution towards efficiency-to-solution

Why is compute efficiency challenging?
It is a nonfunctional requirement

Focuses on user-“irrelevant” issues like resource utilization, scalability, …
We all make a lot of excuses

It’s someone else’s problem
It’s just a matter of money
• More hardware, more people, more time

It’s easy to fix later
It’s “just engineering”

Requires effort,
and there’s (often) little glory in it.

… and new applications and new computing systems
emerge monthly …

Reducing waste in computing
Raise awareness
• Quantify (energy) efficiency
• Quantify waste

Improve compute efficiency
• Improve applications for the systems at hand

• Make applications more efficient
• Make applications share systems

• Improve systems for the applications at hand
• Co-design applications and systems

Introducing performance engineering

Application
specification

Final
code

fast

slow

Draft code

Performance
analysis

Code
tuning

slow

promising

Physicist

Performance
hacker

Bob

*Wishful thinking included…

Today’s approach to high-performance

Alice

Performance engineering provides*
methods and automated* tools to help performance-aware

software design and development for most users.

Performance engineering is systematic …
1. Capture requirements
2. Monitor performance

(micro)benchmarking & hardware counters
3. Analyze feasibility

Performance modeling

4. Design and implement new algorithms
Parallel/distributed computing languages

5. “Optimize” code performance
Tool design and development

6. Document results
Metrics, visualization, user-interaction

and iterative…

Case-studies in heterogeneous computing

Model-based heterogeneous computing

Improve
applications for
the systems at

hand

Jie Shen

Thousands of Cores

Few
cores

Heterogeneous computing?
• A heterogeneous platform = a CPU + a GPU (the starting point)
• An application workload = an application + its input dataset
• Workload partitioning = workload distribution among the processing units of a

heterogeneous system

Application execution
• Static partitioning (SP) vs. Dynamic partitioning (DP)

17

Thousands of Cores

Multiple
Cores

Thousands of Cores

Multiple
Cores

Example 1: dot product
• Dot product

• Compute the dot product of 2 (1D) arrays
• Performance

• TG = execution time on GPU
• TC = execution time on CPU
• TD = data transfer time CPU-GPU

• GPU best or CPU best?

18

Example 1: dot product

0

50

100

150

200

250
Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

19

Waste!

Example 2: separable convolution
• Separable convolution (CUDA SDK)

• Apply a convolution filter (kernel) on a large image.
• Separable kernel allows applying

• Horizontal first
• Vertical second

• Performance
• TG = execution time on GPU
• TC = execution time on CPU
• TD = data transfer time

• GPU best or CPU best?

Example 2: separable convolution

0

20

40

60

80

100

120

140

160

180
Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

Waste!

Example 3: matrix multiply
• Matrix multiply

• Compute the product of 2 matrices
• Performance

• TG = execution time on GPU
• TC = execution time on CPU
• TD = data transfer time CPU-GPU

• GPU best or CPU best?

22

Example 3: matrix multiply

0

50

100

150

200

250

300

350

400

450
Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

23

Waste!

Determining the partition
• Static partitioning (SP) vs. Dynamic partitioning (DP)

24

Thousands of Cores

Multiple
Cores

Thousands of Cores

Multiple
Cores

*Jie Shen et al., IEEE TPDS. 2015
“Workload partitioning for accelerating applications on heterogeneous platforms”

Application workload

n

w

n: the total problem size
w: workload per work-item

0 1

GPU partition CPU partition

WG=w x n x β

β 1-β

WC=w x n x (1-β)

W (total workload size) quantifies how
much work has to be done in a partition

(+TD)

Optimal partitioning

TG (β)+TD (β) = TC (β)

= a value for βWe proposed Glinda, a framework to model and predict
the optimal static partitioning.

*Jie Shen et al., IEEE TPDS. 2015
“Workload partitioning for accelerating applications on heterogeneous platforms”

Predicting the optimal partitioning
• Solving β from the equation

• There are three β predictors (by data transfer type)

Total workload size

HW capability ratios

Data transfer size

β predictor

β =
RGC
1+ RGC

β =
RGC

1+ v
w
×RGD + RGC

β =
RGC −

v
w
×RGD

1+ RGC

No data transfer Partial data transfer Full data transfer

WG

WC

=
β
1−β

=
PG
PC
×

1

1+ PG
Q
×
O
WG

Evaluation
• Effectiveness (compared to Only-CPU/Only-GPU)

• Up to 12.6x/6.6x speedup
• Wasted [%]: T /TPD * (PCPU + PGPU) = S * (PCPU + PGPU)
• Wasted : (T-TPD) * (PCPU + PGPU)

Ex
ec

ut
io

n
tim

e
(m

s)

TitanX : ~280 Watts
CPU: ~80 Watts

Waste for GPU-only

13.7× 14.6× 7.0× 4.8 ×

3.2×–4.1 ×
2.9×

1.2×–1.8 ×

TitanX : ~280 Watts
CPU: ~80 Watts

Contributions & Lessons learned [1]
• Model-based load-balancing for heterogeneous computing

• Analytical model
• Empirical calibration
• Embedded in the Glinda framework

• Challenging programming
• Leverages performance portable programming models

• Maximizes performance and/or resource utilization => minimizes waste
• Uses all types of resources in the system

• Driven by performance
• Could/should be extended for energy efficiency

Case-study #2: Energy harvesting

Improving systems
for the applications

at hand.

Nick Breed

Quincy Bakker

Energy improvements
• Basic assumptions

• Tasks run on different processors
• Idle processors waste energy
• Higher/lower operating frequencies

• => more/less power respectively
• => reduce or increase runtime respectively

• Opportunities
• Dynamic Voltage and Frequency Scaling (DVFS)
• Reducing operating frequencies in idle states may save energy

• No active task => no runtime increase
• Increasing operating frequencies in busy states may save energy

• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)

Approach
• Framework to monitor and improve the energy consumption of

heterogeneous applications
• Analyze application at runtime

• Use live execution data
• Determine application states

• CPU/GPU-utilization patterns
• Apply DVFS for this phases

• Observe energy changes
• Design policies to maximize energy consumption

• What, when, and how to apply DVFS

Analyze application

Identify phases

Select and apply
“right” frequency

Policies for energy
harvesting

State detection
• Monitoring framework

• Records performance variables: e.g., utilization rate, clock rate, ...

• Application state detection based on processor utilization and application events

• 5 states of interest
• CPU/GPU/BOTH IDLE
• ALL BUSY
• CPU BUSY WAIT

• State detection library
• Detects all 5 different states every 10ms

State detection
• Monitoring framework records performance variables: e.g., utilization rate, clock rate, ...
• Application state detection based on processor utilization and application events

States of interest

IDLE

CPU_IDLE

GPU_IDLE

BUSY

BUSY_WAIT

Detect State CPU
Utilization

GPU
Utilization

High

GPU
Utilization

Low

Sync.
Active

High

Low

Low

High

Yes

No

From States to Actions
• Policies define specific actions to take for each state

• Mechanism = dynamic frequency scaling
• Specific actions = how to scale the frequency (up/down, and by how much)
• Ideal operating frequencies prevent “idling”

• Two different policies were defined
• “MinMax” policy: Frequencies minimized or maximized in IDLE and BUSY states
• “System” policy: Frequencies selected by powersave governor in IDLE and BUSY states

From States to Actions
• Detected states are used to trigger energy harvesting actions

• Different states trigger different actions
• E.g., CPU_IDLE triggers the “lower CPU frequency” action

* Graph shows one execution of Matrix Multiply sourced from the NVIDIA CUDA Toolkit v10.2

From States to Actions
• Energy harvesting actions change the operating frequencies based on the

current state
• Busy states => increase the frequency
• Idle states => decrease the frequency

States

From States to Actions
• Changing operating frequencies affects power consumption

• Lower frequencies reduce power consumption

States

Actions

Empirical analysis
• Workload: 10 different applications from different benchmarking suites
• System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.
• Metrics of interest: runtime and energy consumption

• Reference implementation = “do nothing”
• Gain and/or loss against reference

• Five policies :
• Maximum Frequency
• System
• MinMax
• Ranked MinMax
• Scaled MinMax

Results

Results

Contributions & Lessons [2]
• Heterogeneous computing => high performance, high energy consumption
• Energy harvesting can work

• Depends a lot on implementation
• More interesting question: Can we (/should we) explore trade-offs between

energy and performance ?
• Harvesting = how to keep performance fixed
• Energy budgets = how to maximize performance?

Git repository:
https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Case-study #3: Co-designing systems and applications

Improving systems
and applications

(An ideal) Future (WiP)

Application
specificatio

n

Functional
requirements

Performance
requirements

Application
design

Performanc
e prediction

refinement
Domain
specialist

Performance
engineer

Automated
code generation
and tuning.

Final
application

Automated
tools

Take home message
to-the-office

Zero-waste computing
• Awareness: utilizing computing resources with little efficiency is equivalent to

wasting computing.

• Performance and efficiency: non-functional properties, such as performance
and efficiency, are essential to understand computing waste.

• Design-time: performance/efficiency must be essential concerns, like
functionality

• Stakeholders: domain-specialists/application owners must (also) take
responsibility in reducing waste in computing.

To do: Zero-waste computing
• Design and development:
“Build the right computing system for the job at hand”

• Better hardware
• Design and modeling to build the right infrastructure

• Better software
• Performance and energy analysis is essential to improve efficiency

• Better tools
• For design, analysis, and modeling

• Awareness:
“Acknowledge and improve the efficiency of ‘generic’ systems”

• Better metrics
• To demonstrate the waste in computing

• Better methods
• To analyse the complex tradeoffs between performance, energy, QoS, …

