#### TOWARDS ZERO-WASTE COMPUTING

Ana-Lucia Varbanescu

a.l.varbanescu@utwente.nl



# Computing is everywhere ... and it's not free!

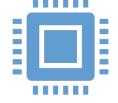
- Top 10 videos on YouTube\* consumed as much as 600-700 EU persons per year
- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year
- A mid
  - Anc

In 2019 Dutch datacenters combined consumed 3-times more energy than the nation
A co
We must act to improve the energy efficiency of computing!

• The IC - sector will reach 21/0 of the global energy consumption by 2000

\*https://en.wikipedia.org/wiki/List\_of\_most-viewed\_YouTube\_videos#Top\_videos

### Three types of stakeholders



#### **Developers and users**

**Improve** the energy efficiency of their own codes, making use of algorithmic, programming, and hardware tools

**Design and implement** applications able to adapt to the available system resources



#### **System integrators**

**Offer** the right mix of resources for the application developers and system operators.

**Include efficient hardware** to enable different application mixes.



#### **System operators**

Ensure efficient scheduling of

workloads on system resources.

#### Harvest energy where

resources/systems are massively underutilized.

# Agenda

- From performance to waste in computing
- Performance Engineering in a nutshell
- N Case-studies
  - N <= 3
- Towards Zero-waste computing



"Larry, do you remember where we buried our hidden agenda?"

# Why care about compute performance?

#### As an (impatient) user ...

- Your application is not responsive
- Your simulation is not ready in time
- Your data is not fully processed

Just buy a newer/bigger computer ! Run it "in the cloud" ! Or ask Stephen, he's a computer scientist !



shutterstock.com · 616740326

## Waste in computing

Unneccesary time (or energy) spent in (inefficient) computing is compute waste.

# Why care about compute performance?

#### As a (mindful) user/developer ...

- Must be aware of how you use computing resources
  - Reduce waste in computing
- Must be proactive about performance
  - If someone else needs to do it, it is already too late ...
- Must argue for a more sustainable answer than more hardware

We all can and must improve software and hardware *efficiency* to minimize waste in computing!



### Waste in computing

Unneccesary time (or energy) spent in (inefficient) computing is compute waste.

To reduce compute waste, we must shift from time-to-solution towards efficiency-to-solution

# Why is compute efficiency challenging?

#### It is a nonfunctional requirement

Focuses on user-"irrelevant" issues like resource utilization, scalability, ...

#### We all make a lot of excuses

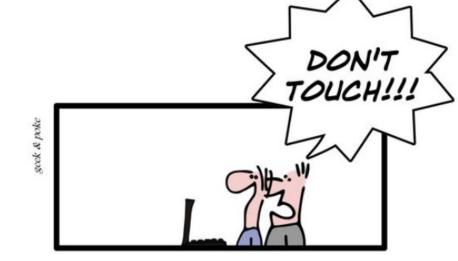
It's s It's ju • Mor

It's easy to fix later

It's "just engineering"

Requires effort,

and there's (often) little glory in it.



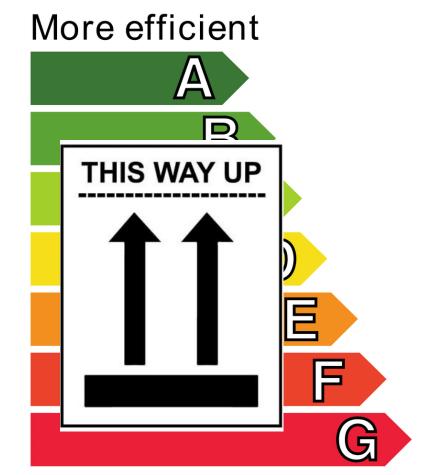
# Reducing waste in computing

#### **Raise awareness**

- Quantify (energy) efficiency
- Quantify waste

#### Improve compute efficiency

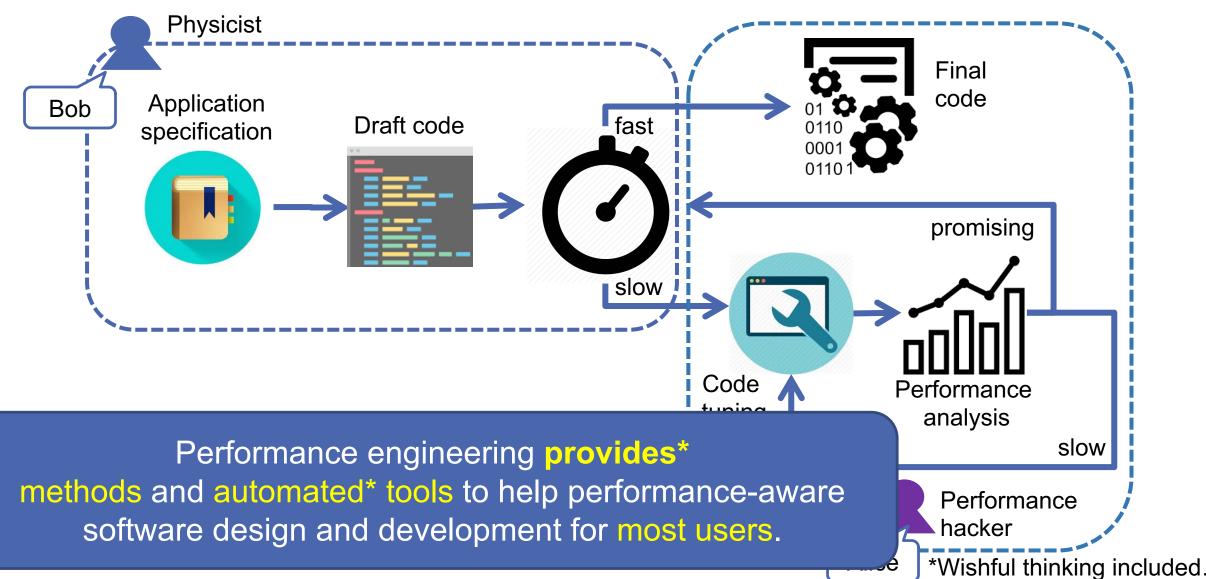
- Improve applications for the systems at hand
  - Make applications more efficient
  - Make applications share systems
- Improve systems for the applications at hand
- Co-design applications and systems



Less efficient

# Introducing performance engineering

## Today's approach to high-performance



# Performance engineering is systematic ...

- 1. Capture **requirements**
- 2. Monitor **performance**

(micro)benchmarking & hardware counters

3. Analyze feasibility

Performance modeling

- 4. Design and implement **new algorithms** *Parallel/distributed computing languages*
- 5. "Optimize" code performance Tool design and development
- 6. **Document** results

Metrics, visualization, user-interaction

# and iterative...



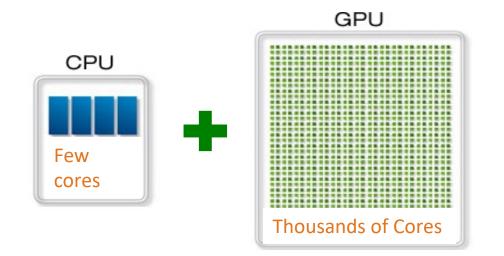
# Case-studies in heterogeneous computing



# Model-based heterogeneous computing

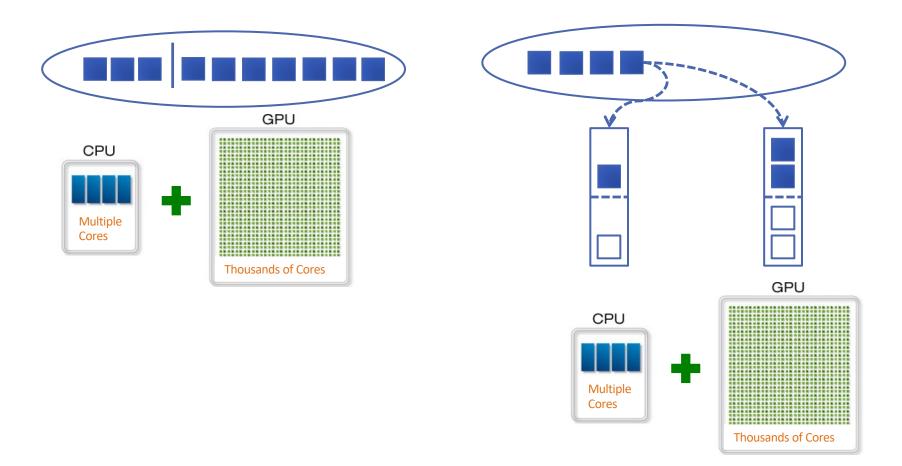
## Heterogeneous computing?

- A heterogeneous platform = a CPU + a GPU (the starting point)
- An application workload = an application + its input dataset
- Workload partitioning = workload distribution among the processing units of a heterogeneous system



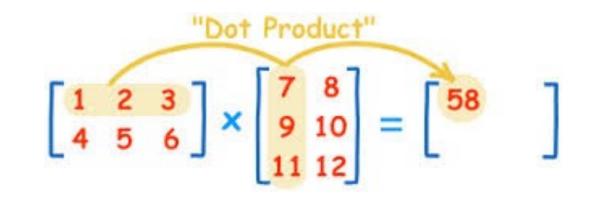
## **Application execution**

• Static partitioning (SP) vs. Dynamic partitioning (DP)

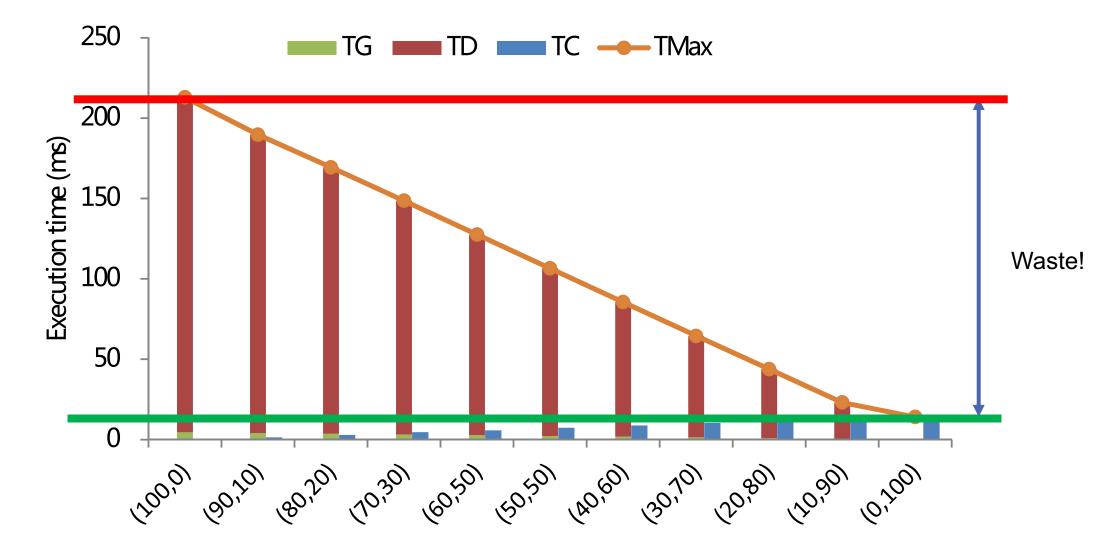


### Example 1: dot product

- Dot product
  - Compute the dot product of 2 (1D) arrays
- Performance
  - $T_G$  = execution time on GPU
  - $T_c$  = execution time on CPU
  - $T_D$  = data transfer time CPU-GPU
- GPU best or CPU best?



#### Example 1: dot product

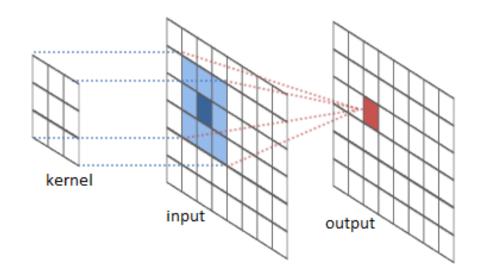


## Example 2: separable convolution

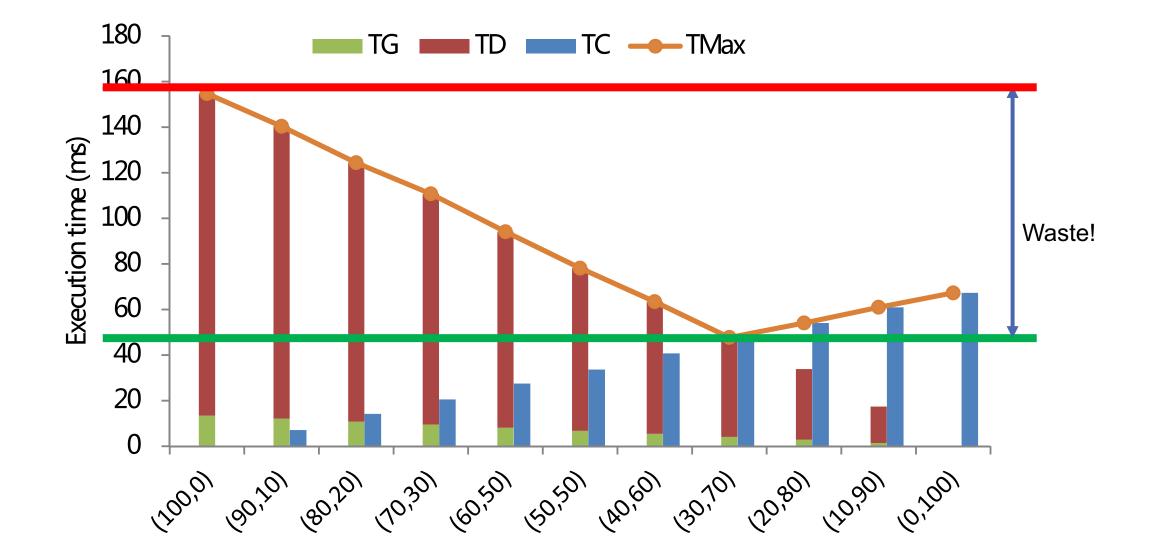
- Separable convolution (CUDA SDK)
  - Apply a convolution filter (kernel) on a large image.
  - Separable kernel allows applying
    - Horizontal first
    - Vertical second

#### Performance

- $T_G$  = execution time on GPU
- $T_c$  = execution time on CPU
- T<sub>D</sub> = data transfer time
- GPU best or CPU best?

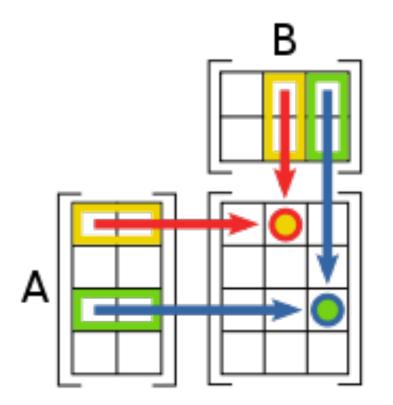


#### Example 2: separable convolution

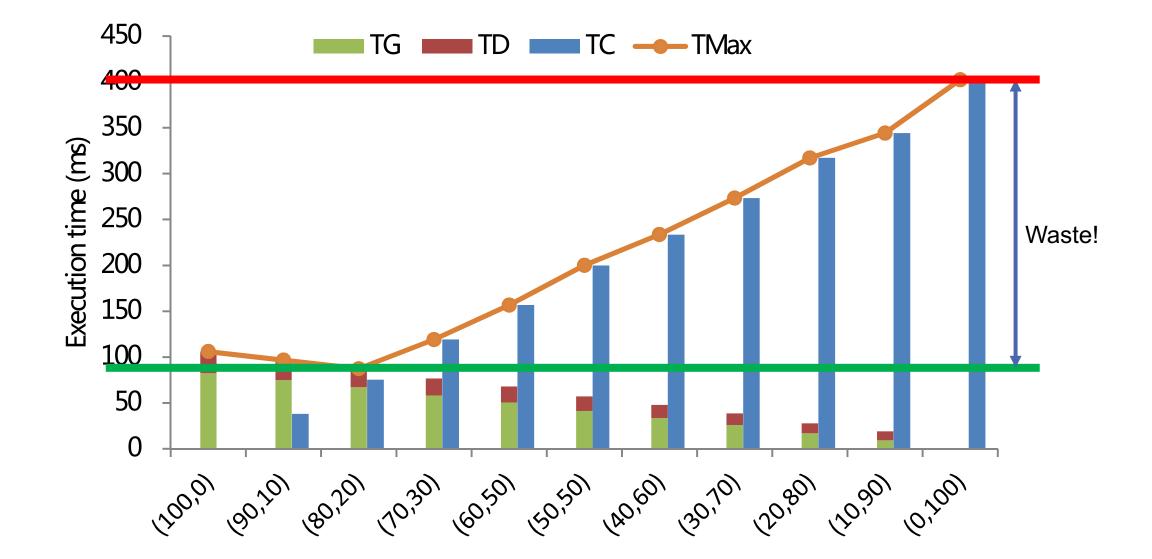


# Example 3: matrix multiply

- Matrix multiply
  - Compute the product of 2 matrices
- Performance
  - $T_G$  = execution time on GPU
  - $T_c$  = execution time on CPU
  - $T_D$  = data transfer time CPU-GPU
- GPU best or CPU best?

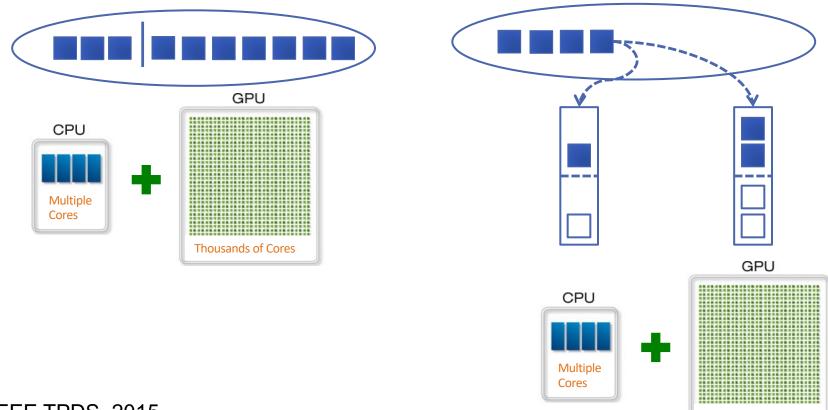


### Example 3: matrix multiply



# Determining the partition

Static partitioning (SP) vs. Dynamic partitioning (DP)

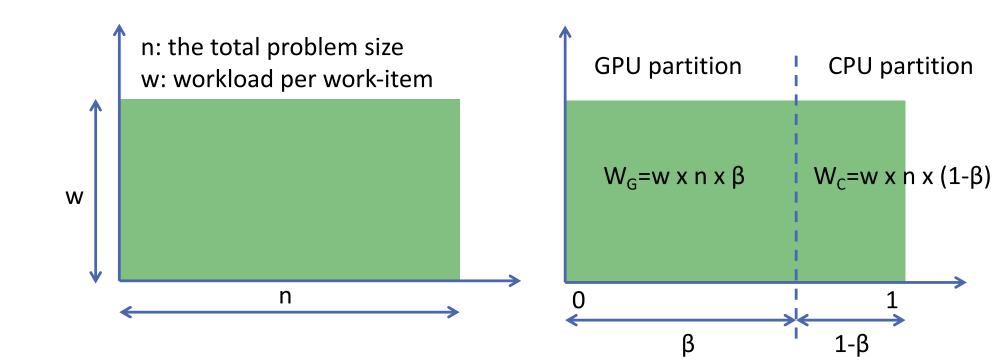


\*Jie Shen et al., IEEE TPDS. 2015

"Workload partitioning for accelerating applications on heterogeneous platforms"

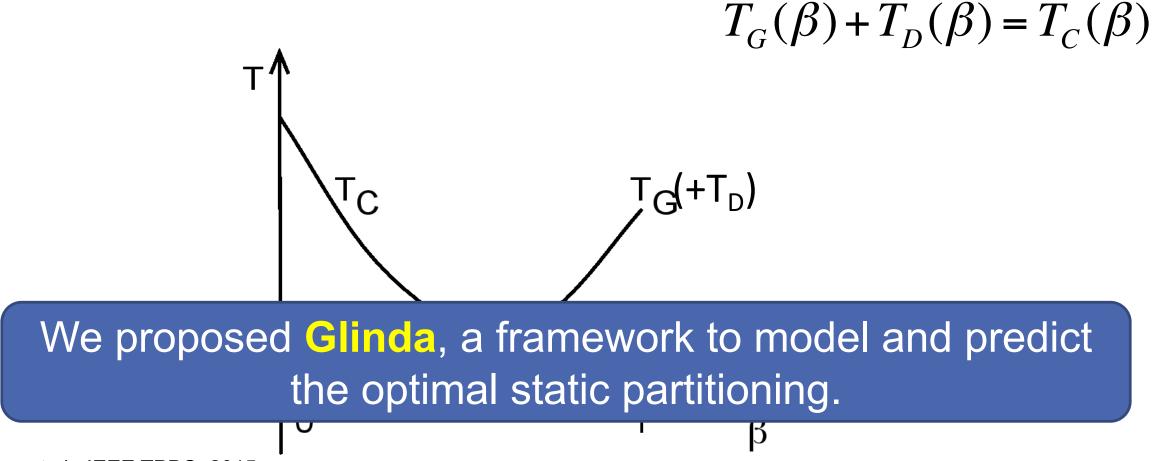
Thousands of Cores

### Application workload



W (total workload size) quantifies how much work has to be done in a partition

# **Optimal partitioning**



\*Jie Shen et al., IEEE TPDS. 2015

"Workload partitioning for accelerating applications on heterogeneous platforms"

# Predicting the optimal partitioning

- Solving  $\boldsymbol{\beta}$  from the equation

Total workload size HW capability ratios Data transfer size

• There are three β predictors (by data transfer type)

$$\beta = \frac{R_{GC}}{1 + R_{GC}} \qquad \beta = \frac{R_{GC}}{1 + \frac{v}{w} \times R_{GD} + R_{GC}} \qquad \beta = \frac{R_{GC} - \frac{v}{w} \times R_{GD}}{1 + R_{GC}}$$

 $\frac{W_G}{W_C} = \frac{\beta}{1-\beta} = \frac{P_G}{P_C} \times \frac{1}{1+\beta}$ 

No data transfer

Partial data transfer

Full data transfer

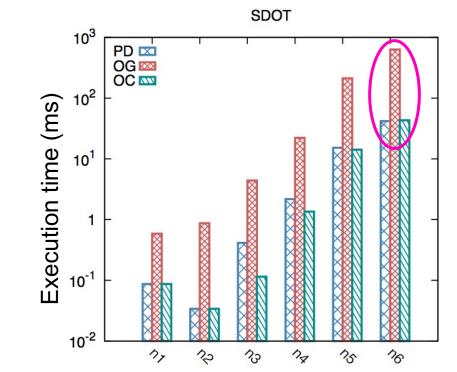
 $W_{G}$ 

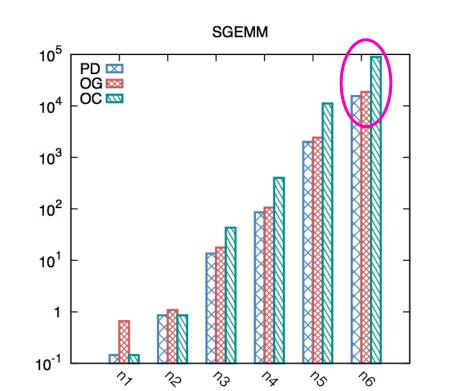
 $\beta$  predictor

TitanX : ~280 Watts CPU: ~80 Watts

## **Evaluation**

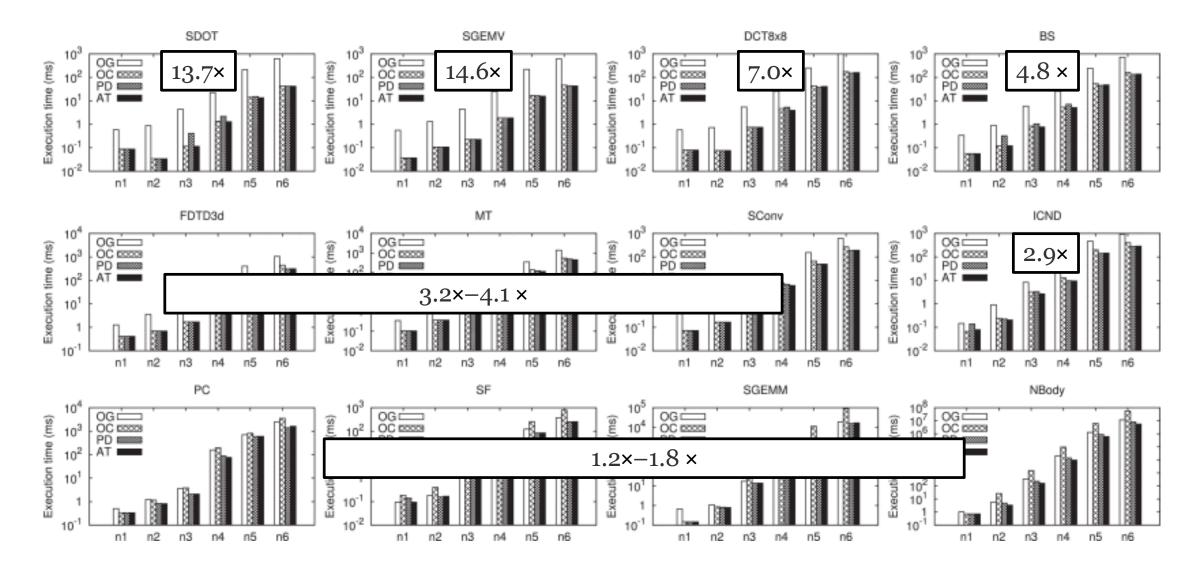
- Effectiveness (compared to Only-CPU/Only-GPU)
  - Up to 12.6x/6.6x speedup
- Wasted [%]: T /T<sub>PD</sub> \* ( $P_{CPU} + P_{GPU}$ ) = S \* ( $P_{CPU} + P_{GPU}$ )
- Wasted :  $(T-T_{PD}) * (P_{CPU} + P_{GPU})$





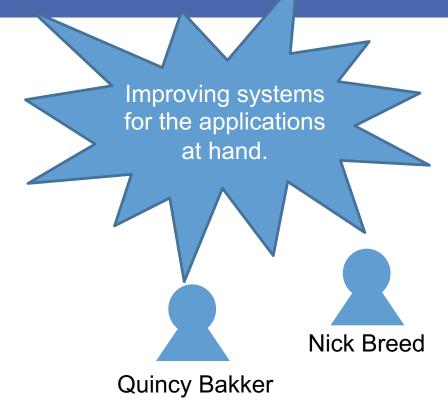
TitanX : ~280 Watts CPU: ~80 Watts

## Waste for GPU-only



# Contributions & Lessons learned [1]

- Model-based load-balancing for heterogeneous computing
  - Analytical model
  - Empirical calibration
  - Embedded in the Glinda framework
- Challenging programming
  - Leverages performance portable programming models
- Maximizes performance and/or resource utilization => minimizes waste
  - Uses all types of resources in the system
- Driven by performance
  - Could/should be extended for energy efficiency



## Case-study #2: Energy harvesting

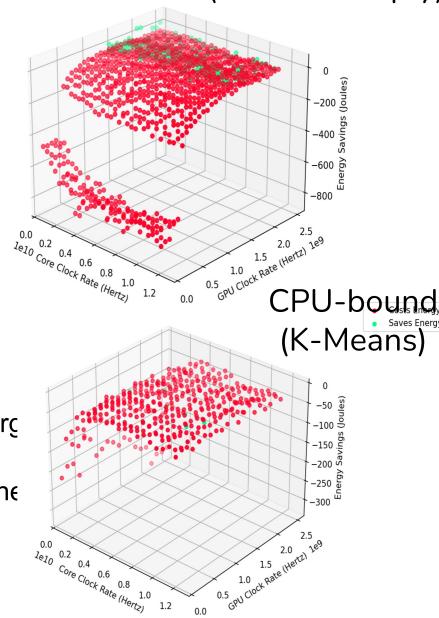
#### GPU-bound (Matrix Multiply)

# Energy improvements

- Basic assumptions
  - Tasks run on different processors
  - Idle processors waste energy
  - Higher/lower operating frequencies
    - => more/less power respectively
    - => reduce or increase runtime respectively

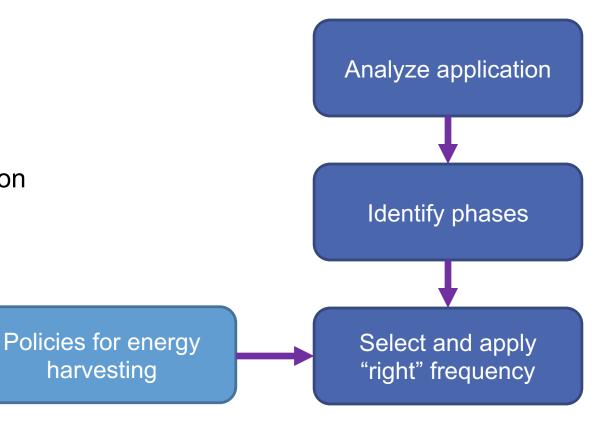
#### Opportunities

- Dynamic Voltage and Frequency Scaling (DVFS)
- Reducing operating frequencies in idle states may save energies
  - No active task => no runtime increase
- Increasing operating frequencies in busy states may save ene
  - Lower runtime => less time to consume energy



# Approach

- Framework to monitor and improve the energy consumption of heterogeneous applications
  - Analyze application at runtime
    - Use live execution data
  - Determine application states
    - CPU/GPU-utilization patterns
  - Apply DVFS for this phases
    - Observe energy changes
  - Design policies to maximize energy consumption
    - What, when, and how to apply DVFS



## State detection

#### Monitoring framework

• Records performance variables: e.g., utilization rate, clock rate, ...

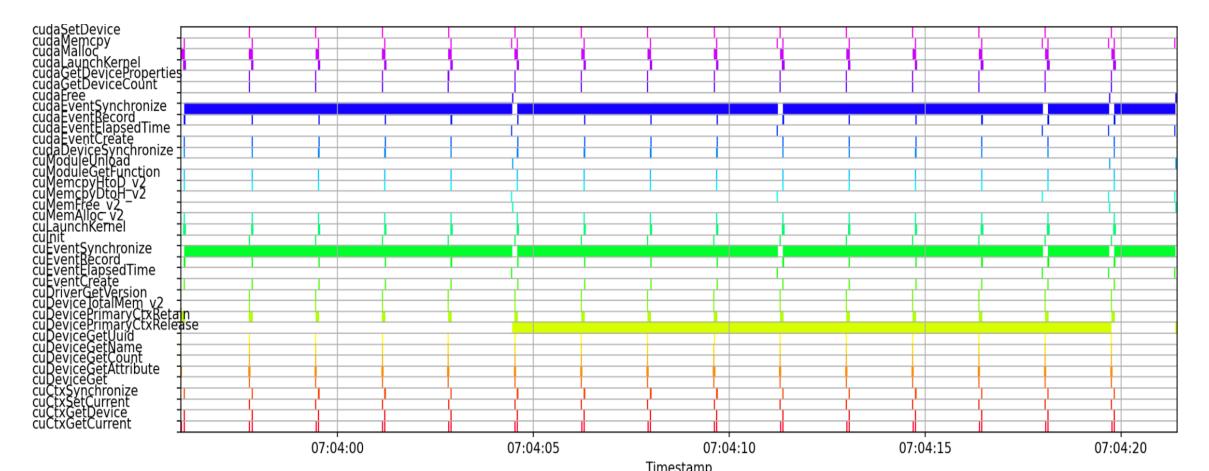
Application state detection based on processor utilization and application events

#### • 5 states of interest

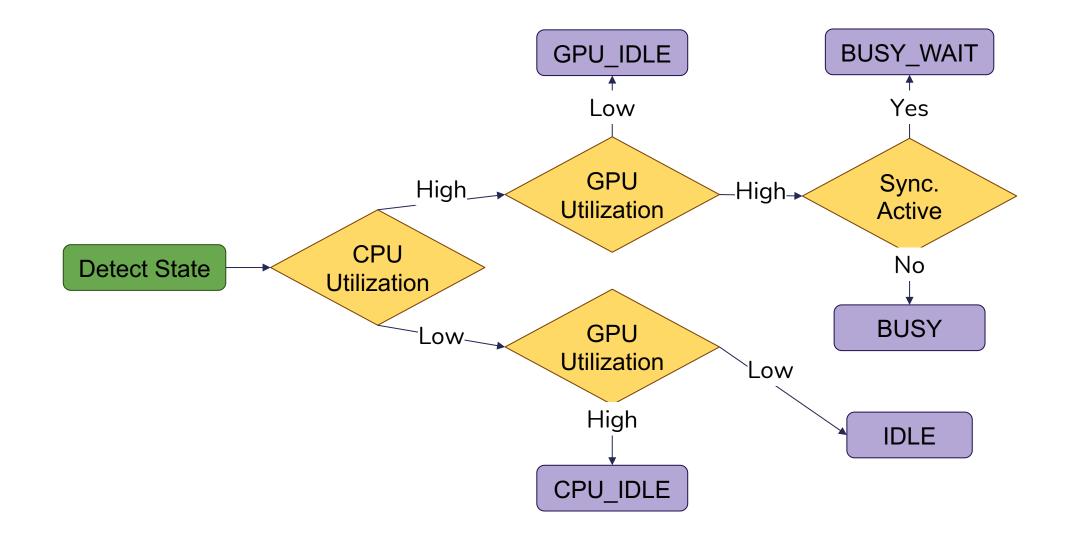
- CPU/GPU/BOTH IDLE
- ALL BUSY
- CPU BUSY WAIT
- State detection library
  - Detects all 5 different states every 10ms

### State detection

- Monitoring framework records performance variables: e.g., utilization rate, clock rate, ...
- Application state detection based on processor utilization and application events

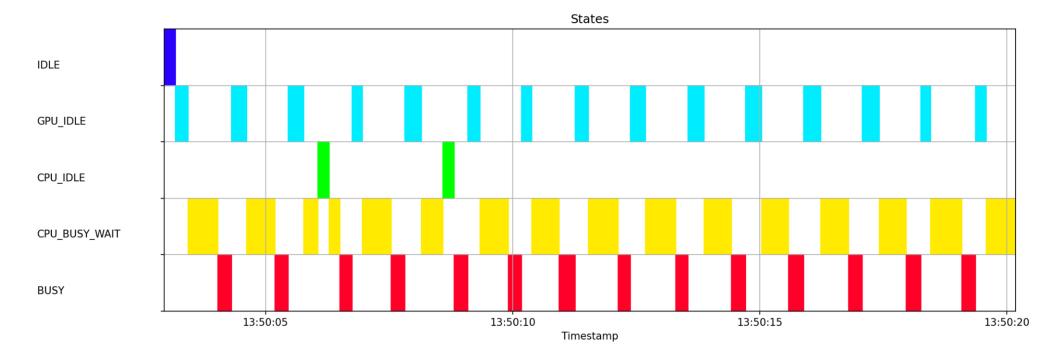


### States of interest

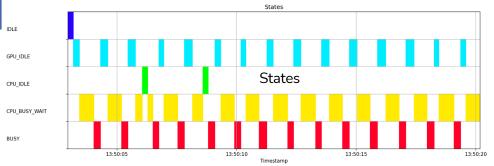


- Policies define specific actions to take for each state
  - Mechanism = dynamic frequency scaling
  - Specific actions = how to scale the frequency (up/down, and by how much)
  - Ideal operating frequencies prevent "idling"
- Two different policies were defined
  - "MinMax" policy: Frequencies minimized or maximized in IDLE and BUSY states
  - "System" policy: Frequencies selected by powersave governor in IDLE and BUSY states

- Detected states are used to trigger energy harvesting actions
  - Different states trigger different actions
    - E.g., CPU\_IDLE triggers the "lower CPU frequency" action

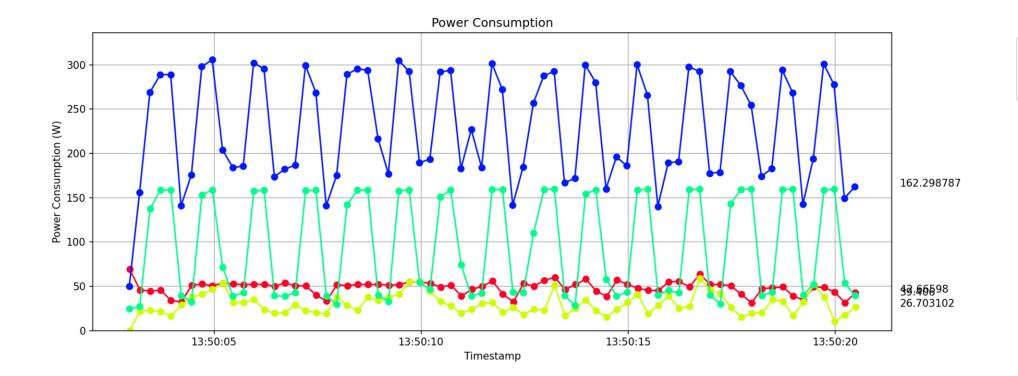


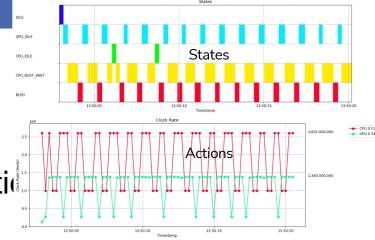
\* Graph shows one execution of Matrix Multiply sourced from the NVIDIA CUDA Toolkit v10.2



- Energy harvesting actions change the operating frequencies based on the current state
  - Busy states => increase the frequency
  - Idle states => decrease the frequency Clock Rate CPU 0 Core 0 2,601,000,000 GPU 0 SM 2.5 2.0 Clock Rate (Hertz) 1.5 1,380,000,000 0.5 0.0 13:50:05 13:50:10 13:50:15 13:50:20 Timestamp

- Changing operating frequencies affects power consumptid
  - Lower frequencies reduce power consumption





CPU 0

GPU 0
Node

CPU 0 Core 0

# **Empirical analysis**

- Workload: 10 different applications from different benchmarking suites
- System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.
- Metrics of interest: runtime and energy consumption
- Reference implementation = "do nothing"
  - Gain and/or loss against reference
- Five policies :
  - Maximum Frequency
  - System
  - MinMax
  - Ranked MinMax
  - Scaled MinMax

#### Results

| Applications         | Policy      |                   |                     |                    |                     |                     |                    |                    |                     |                    |                     |                      |
|----------------------|-------------|-------------------|---------------------|--------------------|---------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------|----------------------|
|                      | No Action   |                   | MinMax              |                    | System              |                     | Maximum frequency  |                    | Ranked MinMax       |                    | Scaled MinMax       |                      |
|                      | Energy      | Time              | Energy              | Time               | Energy              | Time                | Energy             | Time               | Energy              | Time               | Energy              | Time                 |
| BFS                  | 5248.7 J 60 | 60.5 s            | 6499.7 J            | 70.6 s             | 5669.3 J            | 69.7 s              | 6276.2 J           | 60.2 s             | 5294.3 J            | 61.2 s             | 5496.3 J            | 70.8 s               |
| Mara arta            |             |                   | (23.8%)             | (16.7%)            | (8.0%)              | (15.2%)             | (19.6%)            | (-0.5%)            | (0.9%)              | (1.2%)             | (4.7%)              | (17.0%)              |
| Myocyte              |             |                   | _                   |                    |                     |                     |                    |                    |                     |                    |                     |                      |
| LavaMD               | 7454.3 J    | 52.1 s            | 6962.4 J<br>(-6.6%) | 52.6  s<br>(1.0%)  | 7024.6 J<br>(-5.8%) | 52.3 s<br>(0.4%)    | 7473.5 J<br>(0.3%) | 51.0 s<br>(-2.1%)  | 6951.1 J<br>(-6.8%) | 52.9  s<br>(1.5%)  | 7125.0 J<br>(-4.4%) | 53.8 s<br>(3.3%)     |
| NW                   | 6103.3 J    | 64.9 s            | 6465.5 J            | 77.0 s             | 7132.7 J            | 74.1 s              | 7787.6 J           | 70.4 s             | 5619.0 J            | 78.5 s             | 5635.6 J            | 82.5 s               |
|                      |             |                   | (5.9%)              | (18.6%)            | (16.9%)             | (14.2%)             | (27.6%)            | (8.5%)             | (-7.9%)             | (21.0%)            | (-7.7%)             | (27.1%)              |
| Particlefilter-float | 8540.8      | 89.5 s            | 9245.1 J            | 99.6 s             | 10028.8 J           | 96.9 s              | 10301.2 J          | 91.5 s             | 7666.4 J            | 102.8 s            | 7578.4 J            | 107.6 s              |
|                      |             |                   | (8.2%)              | (11.3%)            | (17.4%)             | (8.3%)              | (20.6%)            | (2.2%)             | (-10.2%)            | (14.8%)            | (-11.3%)            | (20.2%)              |
| Kmeans               | 5729.4 J    | 66.2 s            | 6248.0 J            | 77.0 s             | 6303.4 J            | $74.4 \mathrm{s}$   | 6633.3 J           | 66.5 s             | 5514.4 J            | 68.9 s             | 5932.2 J            | 77.9 s               |
|                      |             |                   | (9.1%)              | (16.3%)            | (10.0%)             | (12.4%)             | (15.8%)            | (0.5%)             | (-3.8%)             | (4.1%)             | (3.5%)              | (17.7%)              |
| Bandwidth            | 6337.7 J    | $50.4 \mathrm{s}$ | 5957.7 J            | $54.0 \mathrm{~s}$ | 6128.0 J            | $52.3 \mathrm{s}$   | 6165.4 J           | $51.0 \mathrm{s}$  | 6029.5 J            | 53.5 s             | 6004.9 J            | $54.7 \mathrm{s}$    |
|                      |             |                   | ( <b>-6</b> .0%)    | (7.1%)             | (-3.3%)             | (3.8%)              | (-2.7%)            | (1.2%)             | (-4.9%)             | (6.2%)             | (-5.3%)             | (8.5%)               |
| UnifiedMemoryPerf    | 33188.3 J   | $266.1~{\rm s}$   | 28612.8 J           | $263.1 \mathrm{s}$ | 32491.1 J           | $257.5 \mathrm{s}$  | 34542.5 J          | $258.4 \mathrm{s}$ | 27956.7 J           | $262.5 \mathrm{s}$ | 27810.9 J           | $258.6 \mathrm{s}$   |
|                      |             |                   | (-13.7%)            | (-1.1%)            | (-2.1%)             | ( <b>-3</b> .2%)    | (4.1%)             | (-2.9%)            | (-15.8%)            | (-1.4%)            | (-16.2%)            | (-2.8%)              |
| matrixMul            | 9295.6 J    | 66.6 s            | 10442.3 J           | 67.6 s             | 10962.8 J           | $67.0 \mathrm{s}$   | 10086.7 J          | 66.5 s             | 10913.3 J           | 67.5 s             | 10264.3 J           | 68.0 s               |
|                      |             |                   | (12.3%)             | (1.5%)             | (17.9%)             | (0.6%)              | (8.5%)             | (-0.2%)            | (17.4%)             | (1.4%)             | (10.4%)             | (2.1%)               |
| Jacobi unoptimized   | 10980.4 J   | 118.1 s           | 7802.1 J            | $124.6 \mathrm{s}$ | 8192.6 J            | $128.0 \mathrm{~s}$ | 8039.1 J           | $109.0 \mathrm{s}$ | 8958.9 J            | $109.3 \mathrm{s}$ | 8440.3 J            | $124.8 \mathrm{\ s}$ |
|                      |             |                   | (-28.9%)            | (5.5%)             | (-25.4%)            | (8.4%)              | (-26.8%)           | (-7.7%)            | (-18.4%)            | (-7.5%)            | (-23.1%)            | (5.7%)               |
| Jacobi optimized     | 7697.2 J    | 95.3 s            | 5467.1 J            | $101.9 \mathrm{s}$ | 5280.8 J            | $101.4 \mathrm{s}$  | 5021.9 J           | 85.8 s             | 6090.9 J            | 86.6 s             | 5400.4 J            | $102.1 \mathrm{~s}$  |
|                      |             |                   | (-29.0%)            | (6.9%)             | (-31.4%)            | (6.4%)              | (-34.8%)           | (-10.0%)           | (-20.9%)            | (-9.1%)            | (-29.8%)            | (7.1%)               |

# Results

|                       | Best Policy          |          |       |                                   |        |        |  |  |  |  |
|-----------------------|----------------------|----------|-------|-----------------------------------|--------|--------|--|--|--|--|
| Applications          | Sin                  | gle Core |       | Multi Core                        |        |        |  |  |  |  |
|                       | Name                 | Energy   | Time  | Name                              | Energy | Time   |  |  |  |  |
| BFS                   | Scaled<br>MinMax     | -0.5%    | 0.2%  | Ranked<br>MinMax                  | 0.9%   | 1.2%   |  |  |  |  |
| LavaMD                | Maximum<br>Frequency | -0.7%    | -0.1% | MinMax                            | -6.6%  | 1.0%   |  |  |  |  |
| NW                    | Ranked<br>MinMax     | 4.8%     | 4.4%  | Ranked<br>MinMax                  | -7.9%  | 21.0%  |  |  |  |  |
| Particlefilter-float  | Ranked<br>MinMax     | -0.0     | 1.5%  | Ranked *<br>MinMax                | -10.2% | 14.8%  |  |  |  |  |
| Kmeans                | Ranked<br>MinMax     | 3.7%     | 0.6%  | Ranked<br>MinMax                  | -3.8%  | 4.1%   |  |  |  |  |
| Bandwidth             | Maximum<br>Frequency | -2.3%    | 0.1%  | Maximum <sub>*</sub><br>Frequency | -2.7%  | 1.2%   |  |  |  |  |
| UnifiedMemoryPerf     | MinMax               | -1.5%    | -3.8% | Scaled<br>MinMax                  | -16.2% | -2.8%  |  |  |  |  |
| matrixMul             | Maximum<br>Frequency | 3.5%     | -0.0% | Maximum<br>Frequency              | 8.5%   | -0.2%  |  |  |  |  |
| Jacobi<br>unoptimized | MinMax               | -3.5%    | -7.4% | Maximum<br>Frequency              | -26.8% | -7.7%  |  |  |  |  |
| Jacobi<br>optimized   | MinMax               | -2.7%    | -9.4% | Maximum<br>Frequency              | -34.8% | -10.0% |  |  |  |  |

# Contributions & Lessons [2]

- Heterogeneous computing => high performance, high energy consumption
- Energy harvesting can work
  - Depends a lot on implementation
- More interesting question: Can we (/should we) explore trade-offs between energy and performance ?
  - Harvesting = how to keep performance fixed
  - Energy budgets = how to maximize performance?

Git repository:

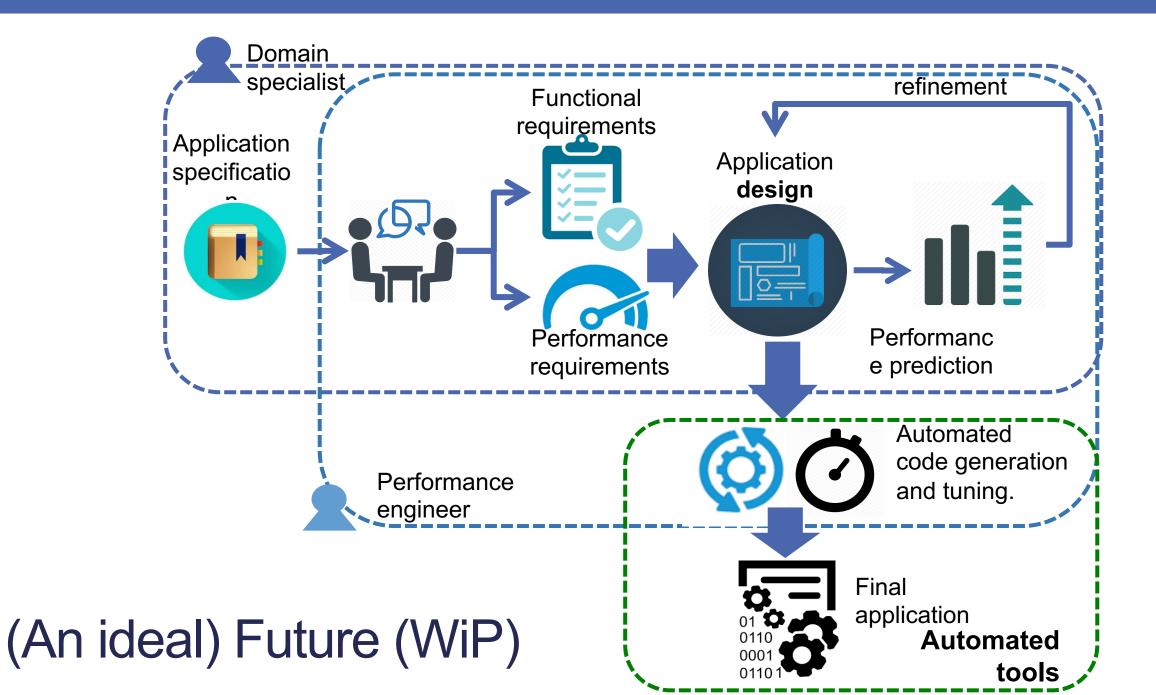
https://gitlab.gub1.com/vrije-universiteit/master-project/energymanager

Thesis:

https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Improving systems and applications

Case-study #3: Co-designing systems and applications







## Zero-waste computing

- Awareness: utilizing computing resources with little efficiency is equivalent to wasting computing.
- **Performance and efficiency**: non-functional properties, such as performance and efficiency, are essential to understand computing waste.
- Design-time: performance/efficiency must be essential concerns, like functionality
- Stakeholders: domain-specialists/application owners must (also) take responsibility in reducing waste in computing.

# To do: Zero-waste computing

#### • Design and development:

"Build the right computing system for the job at hand"

- Better hardware
  - Design and modeling to build the right infrastructure
- Better software
  - Performance and energy analysis is essential to improve efficiency
- Better tools
  - · For design, analysis, and modeling

#### Awareness:

"Acknowledge and improve the efficiency of 'generic' systems"

- Better metrics
  - To demonstrate the waste in computing
- Better methods
  - To analyse the complex tradeoffs between performance, energy, QoS, ...

