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Computing is everywhere ... and it's not free!

- Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year

- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

We (=big science) are part of this!

- In 2019 0 N datacente nmbined consumed 3-times more enerav than the

natio
. Ac We must act to improve the energy efficiency of

computing!
- The IC . : A A a AL R Ak

*https://en.wikipedia.org/wiki/List_of most-viewed YouTube videos#Top_videos



Three types of stakeholders

Developers and users

Improve the energy efficiency of
their own codes, making use of
algorithmic, programming, and
hardware tools

Design and implement
applications able to adapt to the
available system resources

oﬁ

System integrators

Offer the right mix of resources
for the application developers and
system operators.

Include efficient hardware to

enable different application mixes.

=)

System operators

Ensure efficient scheduling of
workloads on system resources.

Harvest energy where
resources/systems are massively
underutilized.



B ———
Agenda

- From performance to waste in computing
- Performance Engineering in a nutshell o

- N Case-studies
- N<=3

- Towards Zero-waste computing

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”



Why care about compute performance”?

As an (impatient) user ...

- Your application is not responsive

- Your simulation is not ready in time
- Your data is not fully processed

Just buy a newer/bigger computer !
Run it “in the cloud™ !
Or ask Stephen, he’s a computer scientist !




Waste in computing

Unneccesary time (or energy) spent in (inefficient)

computing iIs compute waste.




Why care about compute performance?

As a (mindful) user/developer ...

- Must be aware of how you use computing resources
- Reduce waste in computing

- Must be proactive about performance
- If someone else needs to do it, it is already too late ...

- Must argue for a more sustainable answer than more hardware

We all can and must improve software and hardware
efficiency to minimize waste in computing!




Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing iIs compute waste.

To reduce compute waste, we must shift from
time-to-solution towards efficiency-to-solution




Why is compute efficiency challenging”?

It is a nonfunctional requirement
Focuses on user-“irrelevant” issues like resource utilization, scalability, ...
We all make a lot of excuses

'tS_S ... and new applications and new computing systems
It's | emerge monthly ...

It's easy to fix later
It’s “just engineering”
Requires effort,
and there’s (often) little glory in it.

DON'T
TOUCH!!!




Reducing waste in computing

Raise awareness
- Quantify (energy) efficiency
- Quantify waste

More efficient

DN

Improve compute efficiency THIS WAY UP
- Improve applications for the systems at hand
- Make applications more efficient I
- Make applications share systems .
- Improve systems for the applications at hand
- Co-design applications and systems I I

Less efficient



Introducing performance engineering



Today’s approach to high-performance

‘ Physicist
, ------------------------------ ‘ . \
l

Application
specification Draft code

‘-----

Performance
analysis

Performance engineering provides*
methods and automated® tools to help performance-aware Performance

software design and development for most users. hacker J
5 *Wishful thinking included...

-------------_’




Performance engineering is systematic ...
and iterative...

1.
2.

Capture requirements

Monitor performance
(micro)benchmarking & hardware counters
Analyze feasibility

Performance modeling

Design and implement new algorithms
Parallel/distributed computing languages

“Optimize” code performance
Tool design and development

Document results
Metrics, visualization, user-interaction

i wonder if this
will bounce

theycantalk.com
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Case-studies in heterogeneous computing



Improve

applications for
the systems at
hand

) {

Jie Shen

Model-based heterogeneous computing



Heterogeneous computing?

- A heterogeneous platform = a CPU + a GPU (the starting point)
- An application workload = an application + its input dataset

- Workload partitioning = workload distribution among the processing units of a
heterogeneous system

Thousands of Cores



Application execution

- Static partitioning (SP) vs. Dynamic partitioning (DP)




. R
Example 1: dot product

- Dot product
- Compute the dot product of 2 (1D) arrays

- Performance
- Tg = execution time on GPU

- T = execution time on CPU
- Tp = data transfer time CPU-GPU

- GPU best or CPU best?

123x78 58
4 5 6 2 10

11 12




.
Example 1: dot product
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Example 2: separable convolution

- Separable convolution (CUDA SDK)

- Apply a convolution filter (kernel) on a large image.
- Separable kernel allows applying
- Horizontal first
- Vertical second
- Performance
- Tg = execution time on GPU
- T¢ = execution time on CPU N
- Tp = data transfer time

° GPU best or CPU best’) ..................... s
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Example 2: separable convolution
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Example 3: matrix multiply

- Matrix multiply

- Compute the product of 2 matrices

- Performance
- Tg = execution time on GPU B

- T = execution time on CPU B B
- Tp = data transfer time CPU-GPU

- GPU best or CPU best? —




Example 3: matrix multiply
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Determining the partition

- Static partitioning (SP) vs. Dynamic partitioning (DP)

Thousands of Cores

CPU

Multiple
Cores

*Jie Shen et al., IEEE TPDS. 2015 Thousands of Cores
“Workload partitioning for accelerating applications on heterogeneous platforms”




Application workload

n: the total problem size
w: workload per work-item

GPU partition : CPU partition

x (1-B)

W (total workload size) quantifies how
much work has to be done in a partition




T ———
Optimal partitioning

T(P)+T(p)=T.(p)

Te Td+Tp)

We proposed Glinda, a framework to model and predict
the optimal static partitioning.

*Jie Shen et al., IEEE TPDS. 2015
“Workload partitioning for accelerating applications on heterogeneous platforms”



B ———
Predicting the optimal partitioning

- Solving 3 from the equation

Total workload size \ 4 WG /3 PG : ~N

HW capability ratios — mmmp W - -8 - P X | P._ O m=) B predictor
_ ¢ ¢ + X
Data transfer size ’ % o W, ,

- There are three (3 predictors (by data transfer type)

.
5 R, 5 Rge = w» X Rgp

1+1><RGD+RGC 1+ R
w

RGC

"ok,

No data transfer Partial data transfer Full data transfer



: ~280 Watts
~80 Watts

TitanX
CPU

Evaluation

CPU/Only-GPU)

- Effectiveness (compared to Only

- Up to 12.6x/6.6x speedup
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. ~280 Watts

TitanX
C

~80 Watts
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Contributions & Lessons learned [1]

- Model-based load-balancing for heterogeneous computing

- Analytical model
- Empirical calibration
- Embedded in the Glinda framework

- Challenging programming
- Leverages performance portable programming models

- Maximizes performance and/or resource utilization => minimizes waste
- Uses all types of resources in the system

- Driven by performance
- Could/should be extended for energy efficiency



Improving systems
for the applications

at hand.

‘ Nick Breed

Quincy Bakker

Case-study #2: Energy harvesting



!!H-Eoun!
; Matrix Multipl
Energy improvements (Matrix Mutply

- Basic assumptions
- Tasks run on different processors

[ —400

" —600

Energy Savings (Joules)

- Idle processors waste energy
- Higher/lower operating frequencies c o
- => more/less power respectively oo g
- => reduce or increase runtime respectively 106%3;‘26 N o ::a‘e«\e“ﬂ
T e e CPU-bound
Saves Energy
- Opportunities (K-Means)
1 . ;' ..’ .=:°
- Dynamic Voltage and Frequency Scaling (DVFS) "“!g;;ﬁ;g{?g{g&.&,% .
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- Reducing operating frequencies in idle states may save ener¢ %' il
- No active task => no runtime increase g 2oy

- Increasing operating frequencies in busy states may save ene
- Lower runtime => less time to consume energy q
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Approach

- Framework to monitor and improve the energy consumption of
heterogeneous applications
- Analyze application at runtime
- Use live execution data
- Determine application states
- CPU/GPU-utilization patterns Analyze application
- Apply DVFS for this phases
- Observe energy changes

- Design policies to maximize energy consumption
- What, when, and how to apply DVFS

|dentify phases

Policies for energy Select and apply
harvesting “right” frequency



State detection

- Monitoring framework
- Records performance variables: e.g., utilization rate, clock rate, ...

- Application state detection based on processor utilization and application events

- 5 states of interest
- CPU/GPU/BOTH IDLE
- ALL BUSY
- CPU BUSY WAIT

- State detection library
- Detects all 5 different states every 10ms



State detection

- Monitoring framework records performance variables: e.g., utilization rate, clock rate,
- Application state detection based on processor utilization and application events
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States of interest

Yes

High Sync.
Active

GPU
Utilization

Utilization

Utilization

No
Low



From States to Actions

- Policies define specific actions to take for each state
- Mechanism = dynamic frequency scaling
- Specific actions = how to scale the frequency (up/down, and by how much)
- ldeal operating frequencies prevent “idling”

- Two different policies were defined
- “MinMax” policy: Frequencies minimized or maximized in IDLE and BUSY states
- “System” policy: Frequencies selected by powersave governor in IDLE and BUSY states



From States to Actions

- Detected states are used to trigger energy harvesting actions

- Different states trigger different actions
- E.g., CPU_IDLE triggers the “lower CPU frequency” action

States

IDLE I
CPU_IDLE I I

CPU_BUSY_WAIT

13:50:05 13:50:10 13:50:15 13:50:20
Timestamp

* Graph shows one execution of Matrix Multiply sourced from the NVIDIA CUDA Toolkit v10.2



From States to Actions

current state

- Busy states => increase the frequency
- ldle states => decrease the frequency

1e9 Clock Rate
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GPU_IDLE

From States to Actions

- Changing operating frequencies affects power consumptic.
- Lower frequencies reduce power consumption :

Power Consumption (W)

300 1

250 A

200 1

150 A

uuuuuuuuuuuu

States

States

JEE T O O |

Power Consumption

AL

13:50:05 13:50:10 13:50:15
Timestamp

13:50:20

—e— CPUO

CPU O Core 0
—~o— GPUO
—e— Node

162.298787

49.96698
26.703102



Empirical analysis

- Workload: 10 different applications from different benchmarking suites
- System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.
- Metrics of interest: runtime and energy consumption

- Reference implementation = “do nothing”
- Gain and/or loss against reference

- Five policies :
- Maximum Frequency
- System
- MinMax
- Ranked MinMax
- Scaled MinMax



Results

~Policy
Applications No Action MinMax System Maximum frequency Ranked MinMax Scaled MinMax
Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time
Prs 521871 | coss | 649977 | 706s | 5669.3J | 60.7s | 621627 | 60.2s | 520437 | 6L2s | 549637 | 70.8s
' ' (23.8%) | (16.7%) | (8.0%) | (15.2%) | (19.6%) | (-0.5%) | (09%) | (1.2%) | @.7%) | (17.0%)
Myocyte

69624 J | 52.6s | 7024.6J | 52.3s | 74735J | 51.0s | 6951.1J | 529s | 71250 | 53.8s

govaMD M543 16218 | 66%) | (1.0%) | (58%) | (04%) | (03%) | (21%) | (-6.8%) | (15%) | (-44%) | (3.3%)
- 61033 7 | 640 | 64655 | 77.0s | 713277 | TAls | 7187.6J | 704s | 561907 | 785s | 56356J | 825s
: : (5.9%) | (18.6%) | (16.9%) | (142%) | (27.6%) | (8.5%) | (-7.9%) | (21.0%) | (-7.7%) | (27.1%)

. 92451J | 99.6s | 100288J | 96.9s | 10301.2J | 91.5s | 76664J | 1028s | 75784J | 107.6 s
Particlefilter-float | 85408 | 89.5s | “gooy | (11.3%) | (17.4%) | (83%) | (20.6%) | (22%) | (-10.2%) | (14.8%) | (-11.3%) | (20.2%)
7 P | 62480J | 77.0s | 6303.4J | 744s | 6633.3J | 665s | 55144J | 689s | 59322J | 77.9s
s ; 481 (91%) | (16.3%) | (10.0%) | (124%) | (15.8%) | (0.5%) | (-3.8%) | (4.1%) | (3.5%) | (17.7%)

: 5957.7J | 54.0s | 6128.0J | 523s | 6165.4J | 51.0s | 60295J | 535s | 60049J | 54.7s

i adwideh 6337.7J 19048 | (60%) | (7.1%) | (-33%) | (38%) | (27%) | (12%) | (-49%) | (62%) | (-5.3%) | (8.5%)
: 78612.8 J | 263.1s | 32491.1J | 257.5s | 34542.5 J | 2584 s | 27956.7J | 262.5s | 27810.9 J | 258.6 s
UnifiedMemoryPerf | 33188.3 J | 266.1s | g 00y | (1.1%) | (-21%) | (-32%) | (41%) | 2.9%) | (-15.8%) | (-1.4%) | (-16.2%) | (-2.8%)
. — 02956 1 | 6.6 | 104423 [ 67.6s | 100628 | 67.0s | 10086.7J | 665s | 10913.3J | 675s | 102643J | 68.0s
' ' (12.3%) | (1.5%) | (17.9%) | (06%) | (8.5%) | (-0.2%) | (174%) | (1.4%) | (10.4%) | (2.1%)

. n 7802.1J | 12465 | 8192.6J | 128.0s | 8039.1J | 109.0s | 89580 J | 109.3s | 84403 J | 124.8 s
Jacobi unoptimized | 109804 J | 11815 | o5 900y | (5.5%) | (-25.4%) | (84%) | (26.8%) | (7.7%) | (-18.4%) | (-7.5%) | (-23.1%) | (5.7%)
— 5467.1J | 101.9s | 5280.8J | 101.4s | 5021.9J | 858s | 60909J | 86.6s | 54004 J | 102.1s
Jacobi optimized | 7697.20 | 9535 | (09 007y | (6.9%) | (-31.4%) | (64%) | (-34.8%) | (-10.0%) | (-20.9%) | (9.1%) | (-20.8%) | (7.1%)




Results

-

s

Best Pol{cy

Applications Single Core Multi Core
Name Energy | Time Name Energy | Time
Scaled SR G Ranked é "
BFS . -0.5% 0.2% Vi 0.9% 1.2%
LavaMD %i:z;‘;‘f; 0.7% | -01% | MinMax | -6.6% | 1.0%
Ranked o0 o Ranked . .
NW Nk Lo 4.8% 4.4% NN -7.9% 21.0%
i Ranked i % Ranked « e
= - D70 - 2% 4.8%
Particlefilter-float MinMaxe | 20 L5% | \inMax 10.2% | 14.8%
Ranked o7 o7 Ranked i o
Kmeans MinMax | 37 7o 0.6% MinMax | 38% | 41 7o
Bandwidth Mo \ooalt | 0l | o oeedl | po¥)
Frequency Frequency
UnifiedMemoryPerf | MinMax | -1.5% | -3.8% | 5 | 1600 | -2.8%
MinMax
matrixMul St st 3.5% -0.0% e 8.5% -0.2%
Frequency Frequency
PRELL MinMax | -3.5% | -7.4% | Meximum | o5 o0 | 779
unoptimized Frequency
kol MinMax | -2.7% | -0.4% | Maximum | g, g | 10.0%
optimized Frequency




Contributions & Lessons [Z]

- Heterogeneous computing => high performance, high energy consumption

- Energy harvesting can work
- Depends a lot on implementation

- More interesting question: Can we (/should we) explore trade-offs between
energy and performance ?
- Harvesting = how to keep performance fixed
- Energy budgets = how to maximize performance?

Git repository:
https://qitlab.qub1.com/vrije-universiteit/master-project/energymanager
Thesis:
https://qitlab.qub1.com/vrije-universiteit/master-project/thesis



https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Improving systems

and applications

(Saée\s{l}dgf#d: Co-designing systems and applications
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to-the-office
Take message



Zero-waste computing

- Awareness: utilizing computing resources with little efficiency is equivalent to
wasting computing.

- Performance and efficiency: non-functional properties, such as performance
and efficiency, are essential to understand computing waste.

- Design-time: performance/efficiency must be essential concerns, like
functionality

- Stakeholders: domain-specialists/application owners must (also) tak
responsibility in reducing waste in computing.




To do: Zero-waste computing

- Design and development:

“Build the right computing system for the job at hand”
- Better hardware
- Design and modeling to build the right infrastructure
- Better software
- Performance and energy analysis is essential to improve efficiency
- Better tools
- For design, analysis, and modeling

- Awareness:

“Acknowledge and improve the efficiency of ‘generic’ systems”
- Better metrics
« To demonstrate the waste in computing

- Better methods
- To analyse the complex tradeoffs between performance, energy, QoS, ...




