ACAT 2022 -24-28 October 2022 Villa Romanazzi Carducci, Bari, Italy

Track 3 Summary

Computations in Theoretical Physics: Techniques and Methods

- Anke Biekötter Leonardo Cosmai -
 - Joshua Davies Latifa Elouadrhiri

ACAT 2022

Anke Biekötter for Track 3

urospin

Eurospin approvato da Altroconsumo come discount salvaprezzo in Italia, per la categoria prodotti più economici, classifica unica iper, super e discount.

Prodotti di qualità alla massima convenienza tutti i giorni: questa è la Spesa intelligente.

Massima Convenienza

ACAT 2022

Thank you for your contributions!

Anke Biekötter for Track 3

Track 3 Highlights

- Monte Carlo generation
- Precision frontier
- Beyond Standard Model physics •
- Towards Quantum Computing

This is a biased selection

Simon Badger

from theory to experiment

Speeding up Monte Carlo event generators

Anke Biekötter for Track 3

Performance analysis

- Pilot runs (what do we need when?) New architectures - GPUs, vector CPUs
- Portability (Kokkos, Alpaka, ...) Physics ideas and analytic results

ACCELERATING LHC EVENT GENERATION CHRISTIAN GÜTSCHOW

Breakdown of CPU budget in V+jets

ACAT 2022, 24 Oct 2022

chris.g@cern.ch

Christian Gütschow

$$\sigma_{pp \to X_n} = \sum_{ab} \int \mathrm{d}x_a \mathrm{d}x_b \,\mathrm{d}\Phi_n \,f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \mid \mathcal{M}_{ab \to X_n} \mid^2 \Theta_n(p_1, \dots, p_n)$$

$$\sigma_{pp \to X_n} = \sum_{ab} \int dx_a dx_b \, d\Phi_n \, f_a(x_a, \mu_F^2) f_b(x_b)$$

Neural Importance Sampling – Results

remember: aim for $w = f/g \approx 1$, i.e. peaked distribution of w

• Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]

78% 1.52531(2)

64.3%

24847(21)

48.9%

9859(10)

• GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi

0.167865(5)

84 %

NN

- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs [Stienen and Verheyen SciPost Phys. 10, 038 (2021)], [Butter, Plehn and Winterhalder, SciPost Phys. 7 (6), 075 (2019)], [Sipio et al. JHEP 08, 110 (2019)], [Otten et al. Nature Commun. 12 (1), 2985 (2021)], [Choi and Lim, J. Korean Phys. Soc. 78 (6), 482 (2021)]
 - if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

10

 $|\mathcal{M}|^2$

$$\sigma_{pp \to X_n} = \sum_{ab} \int dx_a dx_b \, d\Phi_n \, f_a(x_a, \mu_F^2) f_b(x_b)$$

Max Knobbe

3rd Component: The Color Sum [Bothmann, Giele, Höche, Isaacson, MK, 2106.06507]

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for <u>ر</u> 10--/ jet-processes
- Compare different color treatments: color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence
- \Rightarrow Algorithmic choice: Sum colors

max.knobbe@uni-goettingen.de

 10^{-2}

 10^{-3}

 10^{-}

 10^{-10}

 10^{-7}

 10^{-8}

ent

 \mathbf{X} BlockGen-CO_{Σ} \mathbf{X} BlockGen-CD_{MC}

• Comix (CDBG), MPI

BlockGen-CO_{Σ} (CPU)

Amegic^{*}, MPI

— GPU best

CPU best

3

4

5

 $n_{\rm out}$

24.10.2022

6

7

8

7/12

Neural Importance Sampling – Results

remember: aim for $w = f/g \approx 1$, i.e. peaked distribution of w

• Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]

1.52531(2)

78 %

24847(21)

48.9%

9859(10)

64.3%

• GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi

0.167865(5)

84 %

NN

- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs [Stienen and Verheyen SciPost Phys. 10, 038 (2021)], [Butter, Plehn and Winterhalder, SciPost Phys. 7 (6), 075 (2019)], [Sipio et al. JHEP 08, 110 (2019)], [Otten et al. Nature Commun. 12 (1), 2985 (2021)], [Choi and Lim, J. Korean Phys. Soc. 78 (6), 482 (2021)]
 - if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

10

 $|\mathcal{M}|^2$

ME on a GPU Andrea Valassi

MadEvent/CUDA for $gg \rightarrow t\bar{t}gg$ (improved at ACAT2022)

			madevent		S	tandalone		
CUDA g	grid size		8192			524288		
$aa \rightarrow t\bar{t}aa$	MEs	$t_{\rm TOT} = t_{\rm Mad} + t_{\rm MEs}$	$N_{\rm events}/t_{\rm TOT}$	Λ	$V_{\rm events}/t_{\rm MI}$	Es		
gg → ligg	precision	[sec]	[events/sec]	vents/sec] [1		nr
Fortran	double	58.3 = 5.2 + 53.1	1.55E3 (=1.0)	1.70E3 (=1.0)	—			
CUDA	double	6.1 = 5.7 + 0.36	1.49 E4 (x9.6)	2.54E5 (x149)	2.5 1E5	4.20E5 (x247)		
CUDA	float	5.7 = 5.4 + 0.24	1.59E4 (x10.3)	3.8 <u>2E5 (x224)</u>	3 98E5	8.75E5 (x515)	$d\Phi f(x \mu^2)f(x, \mu^2)$	
			<i>pp</i>	$\rightarrow X_n$		and	$5 \leftarrow n$ $Ja(\sim a, rF)Jb(\sim b, rF) \rightarrow rF$	()ap

Reduced the overhead from scalar Fortran MadEvent overhead from 10% to 5% of multiple fortran (improved handling of MLM merging) Maximum allowed overall speedup from Amdahl's law is now increased from x10 to x20

			T 2022	madevent		st	andalone	
CUDA grid size		AGA12022		8192		5242		
$aa \rightarrow t\bar{t}aa$	MEs	$t_{\rm TOT} = t_{\rm Mad} + t_{\rm MEs}$		$N_{\rm events}/t_{\rm TOT}$	N	Es		
gg → tigg	precision	[sec]		[events/sec]		[MEs/sec]]	
Fortran	double	55.4 =	2.4 + 53.0	1.63E3 (=1.0)	1.70E3 (=1.0)			
CUDA	double	2.9 =	2.6 + 0.35	3.06E4 (x18.8)	2.60E5 (x152)	2.62E5	4.21E5 (x)	
CUDA	float	2.8 =	2.6 + 0.24	3.24E4 (x19.9)	3.83E5 (x225)	3.96E5	8.77E5 (x:	

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi – ACAT, Bari, 24 October 2022

Max Knobbe

3rd Component: The Color Sum [Bothmann, Giele, Höche, Isaacson, MK, 2106.06507]

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for jet-processes
- Compare different color treatments: color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence
- \Rightarrow Algorithmic choice: Sum colors

max.knobbe@uni-goettingen.de

clustering

tree-level ME

34 %

24.10.2022

7/12

Neural Importance Sampling – Results

remember: aim for $w = f/g \approx 1$, i.e. peaked distribution of w

• Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]

78 %

1.52531(2)

64.3%

24847(21)

GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi

0.167865(5)

84 %

NN

- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs Stienen and Verheyen SciPost Phys. 10, 038 (2021)], [Butter, Plehn and Winterhalder, SciPost Phys. 7 (6), 075 (2019)], [Sipio et al. JHEP 08, 110 (2019)], Otten et al. Nature Commun. 12 (1), 2985 (2021)], [Choi and Lim, J. Korean Phys. Soc. 78 (6), 482 (2021)]
 - if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

10

Enrico-

 $|\mathcal{M}|^2$

9859(10)

48.9%

Andrea Valassi ME on a GPU

MadEvent/CUDA for $gg \rightarrow t\bar{t}gg$ (improved at ACAT2022)

			madevent		st	andalone		
CUDA grid size			8192		524288			
MEs		$t_{\rm TOT} = t_{\rm Mad} + t_{\rm MEs}$	$N_{\rm events}/t_{\rm TOT}$	$N_{\rm events}/t_{\rm MEs}$				
gg - 11gg	precision	[sec]	[events/sec]	[MEs/sec]				
Fortran	double	58.3 = 5.2 + 53.1	1.55E3 (=1.0)	1.70E3 (=1.0)	—	—		
CUDA	double	6.1 = 5.7 + 0.36	1.49E4 (x9.6)	2.54E5 (x149)	2.5 1E5	4.20E5 (x247)		2
CUDA	float	5.7 = 5.4 + 0.24	1.59E4 (x 19 .3)	3.8 <u>2</u> E5 (<u>x22</u> 4)	398E5	8.75 (x 5 1 x)	dΦ.	$f_{1}(x_{1}, \mu_{T}^{2})f_{1}(x_{L})$

Reduced the overhead from scalar Fortran MadEvent overhead from 10% to 5% of initial Fortran (improved handling of MLM merging) Maximum allowed overall speedup from Amdahl's law is now increased from x10 to x20 - which we do achieve

			T 2022	madevent		st	andalone	
CUDA grid size		AGA12022		8192		5242		
$aa \rightarrow t\bar{t}aa$	MEs	$t_{\rm TOT} = t_{\rm Mad} + t_{\rm MEs}$		$N_{\rm events}/t_{\rm TOT}$	N	Es		
gg → tigg	precision	[sec]		[events/sec]		[MEs/sec]]	
Fortran	double	55.4 =	2.4 + 53.0	1.63E3 (=1.0)	1.70E3 (=1.0)			
CUDA	double	2.9 =	2.6 + 0.35	3.06E4 (x18.8)	2.60E5 (x152)	2.62E5	4.21E5 (x)	
CUDA	float	2.8 =	2.6 + 0.24	3.24E4 (x19.9)	3.83E5 (x225)	3.96E5	8.77E5 (x:	

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi – ACAT, Bari, 24 October 2022

Max Knobbe

3rd Component: The Color Sum [Bothmann, Giele, Höche, Isaacson, MK, 2106.06507]

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for jet-processes
- Compare different color treatments: color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence
- \Rightarrow Algorithmic choice: Sum colors

max.knobbe@uni-goettingen.

clustering

tree-level ME

34 %

24.10.2022

Neural Importance Sampling – Results

remember: aim for $w = f/g \approx 1$, i.e. peaked distribution of w

	top decays		top-pair production		$gg \rightarrow 3g$		$gg \rightarrow 4g$	
Sample	ϵ_{uw}	E_N [GeV]	ϵ_{uw}	E_N [fb]	ϵ_{uw}	E_N [fb]	ϵ_{uw}	<i>E_N</i> [fb]
Uniform Vegas NN	59 % 50 % 84 %	0.1679(2) 0.16782(4) 0.167865(5)	35 % 40 % 78 %	1.5254(8) 1.5251(1) 1.52531(2)	3.0 % 27.7 % 64.3 %	24806(55) 24813(23) 24847(21)	2.7 % 31.8 % 48.9 %	9869(20) 9868(10) 9859(10)

- Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002]
- GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi
- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs Stienen and Verheyen SciPost Phys. 10, 038 (2021)], [Butter, Plehn and Winterhalder, SciPost Phys. 7 (6), 075 (2019)], [Sipio et al. JHEP 08, 110 (2019)], Otten et al. Nature Commun. **12** (1), 2985 (2021)], [Choi and Lim, J. Korean Phys. Soc. **78** (6), 482 (2021)]

- if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

10

 $pp \rightarrow e^+e^-+0,1,2j@NLO+3,4,5j@LO$

- **Performance of Kokkos**
- does Kokkos provide equivalent • So. performance?
- Plot shows early versions of BlockGen calculating the process: $gg \rightarrow njets$
- Time per Event on y-axis, number of outgoing partons on x-axis
- Compare CPU with C++, GPU with CUDA, and GPU with Kokkos
- Can see the CUDA is 100x faster than the CPU for this example
- Kokkos is slightly less performant than CUDA at low multiplicity (low computational complexity), but reaches comparable performance as multiplicity increases.

Argonne Leadership Computing Facility

Precision Frontier

Johann Usovitsch

Precision test of the Standard Model Future prospects

Overview of future experiments as of 2022

	Expe	eriment ı	incertainty	Theory uncertainty
	ILC	CEPC	FCC-ee	Current
$M_W[{ m MeV}]$	3-4	3	1 0.3	4
$\sin^2\theta_{\rm eff}^{\rm l}[10^{-5}]$	1	2.3	?0.6	4.5
$\Gamma_Z[MeV]$	0.8	0.5	0/10.025	0.4
$R_f[10^{-5}]$	14	17		15

• Recent update from [Alain Blondel, Patrick Janot, Eur.Phys.J.Plus 137 (2022) 1]

• To match the precision of the experiment we compute 3-loop and 4-loop Standard Model predictions

9 / 29

Simon Badger

- Numerical methods
 - Avoiding algebraic complexity
- Physics informed
 - Exploiting known structures

9 / 29

Anke Biekötter for Track 3

Simon Badger

- Numerical methods
 - Avoiding algebraic complexity
- Physics informed
 - Exploiting known structures

9 / 29

Anke Biekötter for Track 3

Simon Badger

- Numerical methods
 - Avoiding algebraic complexity
- Physics informed
 - Exploiting known structures

Numerical approaches

- 4 hidden layers
- 4M x 800 = 3.2B PS points

$$p = \log_{10} \left| \frac{e}{10} \right|$$

Elise de Doncker

de Doncker, Yuasa, Ishikawai, and Kato

Kinematic distributions

Precision boosted BNN

Daniel Maitre

Standard BNN

Machine learning the primitive

Numerical approaches - physics informed

Henry Truong

Anke Biekötter for Track 3

Learning K factors/matrix elements - coefficients of antenna functions

Results: effective gain factors for LHC multi-jet processes

 $f_{\text{eff}} \coloneqq \frac{T_{\text{standard}}}{T}$

Using 1M training events:

Timo Janssen

Analytic approaches Computatio

Introduction

0

Processes 00

00

Zeno Capatti

Anke Biekötter for Track 3

n Finite 000	e fields	Reconstruction	Performance 0●00	Conclusion O	
Ti	ming				Finite fields
		1			
f64/f	64	Evaluatior	strategy		
ne (s)	f (%)	Time (s)	f (%)		
1.39	69	1.89	77		
1.35	91	1.37	91		
1.34	92	1.57	93		
1.34	93	1.38	93		Ciusanna da Laur
1.14	99	1.16	99		Ordseppe de Laur
1.36	99	1.39	99		
1.36	99	1.39	99		EPENDENCIES 3. LIPS: LORENTZ INVARIANT PHASE SPACE 0000
1.14	99	1.14	99		10.00.1234
1.84	99	1.90	99		LS GRAPH ¹²⁰
1.82	99	1.94	99		
1.71	99	1.77	99		GVP GDeLaurentis / pvadic CINCUIT
9	99	26	99		«Arithmetic without limitations»
int amplitudes	s in massless	QCD with finite field	י א פּיע א פּיע ls	_= = →) Q (> 14/17	mpmath SymPy GDel aurentis
					$\square \square $
				V	<u>↓</u> ↓ ↓ ↓
			Lo	rentz	Invariant Phase Space
			Cor	ntinuous Integra	ation passing Coverage 80% PyPI downloads 37/month 🧐 launch

¹Charles R. Harris et al. "Array programming with NumPy". In: *Nature* 585 (2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

²Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18). http://mpmath.org/. 2013.

³Aaron Meurer et al. "SymPy: symbolic computing in Python". In: *PeerJ Computer Science* 3 (Jan. 2017), e103. ISSN: 2376-5992.

⁴Wolfram Decker et al. SINGULAR 4-3-0 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. 2022. ▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ()

Giuseppe De Laurentis

Ryan Moodie

SINGULAR AND p-ADIC PHASE SPACE WITH LIPS

4.	CONCLUSION
0	

New Theory Prediction Pipeline

- Looking for new physics
 - LHC and beyond
- Model independence
- Recasting
- Symmetries

How to search for symmetries?

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together

Word2Vec does it: (England - London = Paris - France)

Feed-forward network

Sven Krippendorf

[1301.3781, used for re-discovering periodic table 1807.05617, classifying scents of molecules 1910.10685]

Andrea Wulzer

The LHC g.o.f. challenge

By analysing the LHC data, we would like to find evidence of **failure of the SM theory**, suggesting need of **BSM**.

This is a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region Affecting few (unknown) observables over ∞ many we can measure

Model-dependent

BSM searches

Optimise sensitivity to one

Fail to discover other models.

What if the right theoretical

model is not yet formulated?

specific BSM model

R

 H_1

- Model-independent searches
- Hw
- Could reveal **truly unexpected** new physical laws.
- No hopes to find Optimal strategy.
 For a Good strategy, we need a good choice of H_w.

Track 3

g

-0.8

Classificatior

The Normalised AutoEncoder

['A normalised autoencoder for LHC triggers' - Dillon, Favaro, Plehn, Sorrenson, Krämer]

No complexity bias!

More rubust and reliable anomaly detection

Visualisation of the latent space

Looks like a mess, but very useful for interpreting the results and diagnosing problems with the training!

Barry Dillon

Barry Dillon – Universität Heidelberg – Anomaly searches for new physics at the LHC

Anomaly detection

Anke Biekötter for Track 3

Theo Heimel

Matrix Element Method

- Process with theory parameter α , hard-scattering momenta x_{hard}
- Likelihood at hard-scattering level given by differential cross section

$$p(x_{\text{hard}}|\alpha) = \frac{1}{\sigma(\alpha)} \frac{\mathrm{d}\sigma(\alpha)}{\mathrm{d}x_{\text{hard}}}$$

- Neyman-Pearson lemma \implies optimal use of information
- Differential cross section only known analytically at hard-scattering level

The Normalised AutoEncoder

['A normalised autoencoder for LHC triggers' - Dillon, Favaro, Plehn, Sorrenson, Krämer]

No complexity bias!

More rubust and reliable anomaly detection

Visualisation of the latent space

Looks like a mess, but very useful for interpreting the results and diagnosing problems with the training!

Barry Dillon

Barry Dillon – Universität Heidelberg – Anomaly searches for new physics at the LHC

Anomaly detection

original data are shown.

Theo Heimel

Matrix Element Method

- Process with theory parameter α , hard-scattering momenta x_{hard}
- Likelihood at hard-scattering level given by differential cross section

$$p(x_{\text{hard}}|\alpha) = \frac{1}{\sigma(\alpha)} \frac{\mathrm{d}\sigma(\alpha)}{\mathrm{d}x_{\text{hard}}}$$

- Neyman-Pearson lemma \implies optimal use of information
 - cross section only known analytically at hard-scattering level

Figure 3: rRTBMs modelling the concentrations of Uranium and Cesium (first row), Cobalt and Titanium (second row) and, Cesium and Scandium (third row) for $N_h = 2, 4, 6$ (left,center,right). The rRTBM contours and histograms of the

Recasting

Jamie Yellen

Anke Biekötter for Track 3

Dark Matter MC event generation

ETH zürich

Beam-dump experiments sensitivity

- Given an experimental set-up and selection cuts, DMG4 enables a realistic study of the **sensitivity** of an experiment with a full set of simulations
- To cope with the extremely low DM production rate, **biasing of the cross-section** can be introduced to generate a reasonable fraction of DM events in the set-up (*BiasSigmaFactor* parameter) \rightarrow **observe DM** propagation in the set-up and optimize **event selection** (signal to background)
- Final sensitivity is **normalised** w.r.t the biasing factor to retrieve the expected number of DM events

Institute for Particle Physics and Astrophysics (IPA)

Henri Sieber on behalf of the DMG4 team | 10/25/22 | 12

Henri Sieber

Useful Near-Term Quantum Algorithms Quantum Machine Learning (QML): Quantum advantages proven for Learning complex patterns w/ quantum feature maps (arXiv:2010.02174) Exponential gain in predicting certain worst-case error (arXiv:2101.02464) Quantum correlations used in generative modeling (arXiv:2101.08354) **Quantum Chemistry and Materials Studies** Variational quantum eigensolvers (VQE) for energy estimation Quantum simulation of dynamics of excitation Study of quantum many-body phenomena **Optimization Problems**: Quantum Approximate Optimization Algorithm

July 2022

Quantum Machine Learning

Top Tagging through MPS

Kiss, Tacchino, et al., Mach. Learn .: **Application to Force Fields (Chemistry)** Sci. Technol. 3 035004 (2022) $W: [-1,1] \to [-\pi,\pi]^3$ bond lenath πr QNN with 10 layers (50 parameters) $\arcsin(r)$ $r \mapsto$ $\arccos(r)$ gy [eV] * NN 0.5 + exact QNN 0.0 -0 2.0 exact QNN 0 p −1.0 1.5 - exact -1.5- dassical -2 -- quantum 0.0 0.1 0.2 0.3 0.4 0.5 0.6 inter-atomic distance [Å] time [fs] inter-atomic distance [Å] (a) Time evolution of the inter-atomic distance (a) LiH Energy (b) LiH Force Comparison with a neural $\vec{F} = -\vec{\nabla}_r E(r)$ **Molecular Dynamics** network of equal complexity QUANTUM TECHNOLOGY INITIATIVE UNIVERSITÉ DE GENÈVE

Oriel Kiss

A hard decision making process

Our best classical (not quantum!) classifier with diameter, grading, histologic type, multifocality, in situ component, PgR:

AUC (%)	Accuracy (%)	Specificity (%)	Sensitivity $(\%)$
70.8 (70.3-71.1)	69.8 (69.3-70.2)	74.8 (72.9-75.1)	61.0 (60.3-61.7)

reporting the 1^{st} - 3^{rd} interquartile range after 10 ten-fold cross-validations.

Domenico Pomarico

Quantum Circuit Born machine (QCBM)

1. Sample from a variational pure state $|\psi(\theta)\rangle$ by projective measurement with probability given by the **Born rule**: $p_{\theta}(x) = |\langle x | \psi(\theta) \rangle|^2$.

n dimensional binary strings map to 2ⁿ bins of the discretized dataset.

- 2. Training (Hybrid loop):
- KL divergence
- Delgado and Hamilton, arXiv:2203.03578 (2022).
- Adversarial (QGAN) Zoufal, et al., npj Quantum Inf 5, 103 (2019).
- Kyriienko, et al., arXiv: 2202.08253 (2022). • In the phase space.
- Maximum Mean Discrepancy

$\mathsf{MMD}(\mathsf{P},\mathsf{Q}) = \mathbb{E}_{X \sim P}[K(X,Y)] + \mathbb{E}_{X \sim Q}[K(X,Y)] - 2\mathbb{E}_{X \sim P}[K(X,Y)]$

- 3. Why the *Maximum Mean Discrepancy* MMD?
 - Resource efficient for NISQ devices.
 - Stable.
 - However, empirically less performant than adversarial.

M.Grossi - CERN QTI - ACAT22

Michele Grossi

Quantum chemistry and fluids

Variational quantum eigensolver

Hardware results (IBMQ)

- Start from the classical solution (warm start).
- Qubit Based Excitation descending UCC Ansatz.
- 10 runs on the 27 qubits IBMQ mumbai chip.

Error mitigation

• **Readout:** individually inverse the error matrices

$$S_k = \begin{pmatrix} P_{0,0}^{(k)} & P_{0,1}^{(k)} \\ P_{1,0}^{(k)} & P_{1,1}^{(k)} \end{pmatrix}.$$

• Here, $P_{i,j}^{(k)}$ is the probability of the k-th qubit to be in state $j \in \{0, 1\}$ while measured in state $i \in \{0, 1\}$.

hardware	No. parameters	No. CNOT	mean	st. deviation	exact	error ratio
ibmq_mumbai raw (g.s.)	9	209	-6.27	0.269	-5.529	13.36%
ibmq_mumbai mitigated (g.s.)	9	209	-5.319	0.24	-5.529	3.81%
ibmq_mumbai raw (1st es)	3	41	-2.907	0.87	-3.420	14.97%
ibmq_mumbai mitigated (1st es)	3	41	-3.424	0.08	-3.420	0.12%

O. Kiss - QTI CERN

NEXT STEPS

- Build Quantum Circuit for the Collision and Streaming of qLBM
- Implement the Quantum Circuit in the Intel Quantum SDK
- Finally, Solve a simple Fluid Dynamics problem using this Circuit.
- Validate the results.

Tejas Shinde

Optimisation

Quantum annealers

Qibo

Frameworks

Juan Carlos Criado **QFitter: EFT Wilson coefficient fits** 2207.10088

$$\chi^2 = \sum_{ij} V_a C_{ab}^{-1} V_b, \qquad V_a = O_a^{(exp)} - O_a^{(th)}(c)$$
 $O_a^{(th)}(c) = A_a + \sum_i B_{ai} c_i + \sum_{ij} C_{aij} c_i c_j$

 ${\cal L}=rac{c_{u3}y_t}{v^2}(\phi^\dagger\phi)(ar q_L ilde \phi u_R)+rac{c_{d3}y_b}{v^2}(\phi^\dagger\phi)(ar q_L\phi d_R)$ $+ rac{i c_W g}{2 m_W^2} (\phi^\dagger \sigma^a D^\mu \phi) D^
u W^a_{\mu
u} + rac{c_H}{4 v^2} \left(\partial_\mu (\phi^\dagger \phi)
ight)^2$ $+ rac{c_{\gamma}(g')^2}{2m_W^2} (\phi^{\dagger}\phi) B_{\mu
u} B^{\mu
u} + rac{c_g g_S^2}{2m_W^2} (\phi^{\dagger}\phi) G^a_{\mu
u} G^{a\mu
u}$ $+ \, {i c_{HW} g \over 4 m_W^2} (\phi^\dagger \sigma^a D^\mu \phi) D^
u W^a_{\mu
u}$ $+ rac{i c_{HB} g'}{4 m_{\scriptscriptstyle W}^2} (\phi^\dagger D^\mu \phi) D^
u B_{\mu
u} + {
m h.c.}$

Qibo is an open-source full stack API for quantum simulation and quantum hardware control and calibration.

Andrea Pasquale

The future

- Faster, more precise calculations and event generation
- New physics: model independent searches
- Towards Quantum Computing

There are a lot of exciting ideas for us. Happy coding!

- Anke Biekötter Leonardo Cosmai -
 - Joshua Davies Latifa Elouadrhiri

