Track 3 Summary

Computations in Theoretical Physics: Techniques and Methods

Anke Biekötter - Leonardo Cosmai Joshua Davies - Latifa Elouadrhiri

ACAT 2022 -
24-28 October 2022
Villa Romanazzi Carducci, Bari, Italy

ACAT 2022

ACAT 2022

Thank you for your contributions!

Track 3 Highlights

- Monte Carlo generation
- Precision frontier
- Beyond Standard Model physics
- Towards Quantum Computing

This is a biased selection

Simon Badger

from theory to experiment

Speeding up Monte Carlo event generators

- Performance analysis
- Pilot runs (what do we need when?)
- New architectures - GPUs, vector CPUs
- Portability (Kokkos, Alpaka, ...)
- Physics ideas and analytic results

Breakdown of CPU budget in V+jets

Christian Gütschow

Neural Importance Sampling - Results

Enrico
 Bothmann

Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002] GPU evaluation of MEs desirable for efficient training of. talks by M. Knobbe, R. Wang and A. Valassi

- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs

if no suriectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

Enrico
 Bothmann

$p p \rightarrow e^{+} e^{-}+0,1,2 j @ \mathrm{NLO}+3,4,5 j @ \mathrm{LO}$

Max Knobbe

Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002] GPU evaluation of MEs desirable for efficient training of. talks by M. Knobbe, R. Wang and A. Valassi

- Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs

if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result
- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for jet-processes
- Compare different color treatments:
color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
Color-summing scales worse than color-dressing, bu faster up to roughly $5-6$ outgoing jets
Caveat: Color-sampling comes with penalty factor from slower convergence
\Rightarrow Algorithmic choice: Sum colors

ME on a GPU

Andrea Valassi

MadEvent/CUDA for gg \rightarrow tt̄gg (improved at ACAT2022)

CUDA grid size		ICHEP2022	madevent		standalone		
		8192		524288			
$g g \rightarrow t \overline{t g}$	$\begin{gathered} \text { MEs } \\ \text { precision } \end{gathered}$		$\begin{gathered} t_{\mathrm{TOT}}=t_{\mathrm{Mad}}+t_{\mathrm{MEs}} \\ {[\mathrm{sec}]} \end{gathered}$	$N_{\text {events }} / t_{\text {TOT }}$ [events/sec]	$N_{\text {events }} / t_{\text {MEs }}$ [MEs/sec]		
Fortran	double	$58.3=5.2+53.1$	1.55 E 3 ($=1.0$)	1.70 E 3 ($=1.0$)	-	-	
CUDA	double	$6.1=5.7+0.36$	1.49E4 (x9.6)	2.54 E 5 (x149)	2.51 E	4.20E5 (x247)	
CUDA	float	$5.7=5.4+0.24$	1.59 E 4 (x10.3)	3.82E5 (x224)	3.98E5	8.75E5 (x515)	

Enrico

Bothmann

Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002 GPU evaluation of MEs desirable for efficient training cf. takks by M. Knobbe, R. Wang and A. Valassi Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs

if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration result

Max Knobbe

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time fo jet-processes
- Compare different color treatments:
color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
Color-summing scales worse than color-dressing, bu
faster up to roughly $5-6$ outgoing jets
Caveat: Color-sampling comes with penalty factor from slower convergence
\Rightarrow Algorithmic choice: Sum colors

$$
p p \rightarrow e^{+} e^{-}+0,1,2 j @ \mathrm{NLO}+3,4,5 j @ \mathrm{LO}
$$

ME on a GPU

Andrea Valassi

MadEvent/CUDA for gg \rightarrow tt̄gg (improved at ACAT2022)

CUDA grid size		ICHEP2022	madevent		standalone		
		8192		524288			
$g g \rightarrow t \overline{t g} g$	$\begin{gathered} \text { MEs } \\ \text { precision } \end{gathered}$		$\begin{gathered} t_{\text {TOT }}=t_{\text {Mad }}+t_{\text {MEs }} \\ {[\text { [sec] }} \end{gathered}$	$N_{\text {events }} / t_{\text {TOT }}$ [events/sec]	$N_{\text {events }} / t_{\text {MEs }}$ [MEs/sec]		
Fortran	double	$58.3=5.2+53.1$	1.55 E 3 ($=1.0$)	1.70E3 ($=1.0$)	-	-	
CUDA	double	$6.1=5.7+0.36$	1.49 E 4 (x9.6)	$2.54 \mathrm{E5}$ (x149)	2.51 E5	4.20E5 (x247)	
CUDA	float	$5.7=5.4+0.24$	1.59E4 (x10.3)	3.82E5 (x224)	3.98E5	8.75 E5 (x515)	

Reduced the overhead from scalar Fortran MadEvent overhead from 10% to 5% of initial Fortran (improved handling of MLM merging) Maximum allowed overall speedup from Amdah's law is now increased from $\times 10$ to $\times 20-$ which we do achieve

Enrico

CUDA grid size		ACAT2022	$\begin{array}{\|c\|} \hline \text { madevent } \\ \hline 8192 \end{array}$		standalone			
					524288			
$g g \rightarrow t \overline{t g} g$	$\begin{gathered} \text { MEs } \\ \text { precision } \end{gathered}$		$\begin{gathered} t_{\mathrm{TOT}}=t_{\mathrm{Mad}}+t_{\mathrm{MEs}} \\ {[\mathrm{sec}]} \end{gathered}$	$N_{\text {events }} / t_{\text {Tot }}$ [events/sec]	$N_{\text {events }} / t_{\text {MEs }}$ [MEs/sec]			
Fortran	double	$55.4=2.4+53.0$	1.63 E 3 ($=1.0$)	1.70E3 ($=1.0$)	-	-		$p p \rightarrow e^{+} e^{-}+0,1,2 j @ \mathrm{NLO}+3,4,5 \mathrm{j} \mathrm{LO}$
CUDA	double	$2.9=2.6+0.35$	3.06E4 (x18.8)	2.60 E 5 ($\times 152$)	2.62E5	4.21E5 (x)		

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for jet-processes
- Compare different color treatments:
color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed
approaches approaches
Color-summing scales worse than color-dressing, bu
faster up to roughly $5-6$ outgoing jets
Caveat: Color-sampling comes with penalty factor from slower convergence
\Rightarrow Algorithmic choice: Sum colors

remember: aim for $w=f / g \approx 1$, i.e. peaked distribution of w

Smaller impact for more complicated (multi-channel) processes, similar in [Gao et al., Phys. Rev. D 101 (2020) no.7, 076002] GPU evaluation of MEs desirable for efficient training cf. talks by M. Knobbe, R. Wang and A. Valassi
Alternative to ML-assisted phase space sampling: directly learn target distribution using autoregressive flows, GANs, VAEs

if no surjectivity guarantee \rightarrow might miss tails of distributions and get small bias in overall integration resu

Taylor Childers

Performance of Kokkos

- So, does Kokkos provide equivalent performance?
- Plot shows early versions of BlockGen ${ }_{20}^{10}$ calculating the process: $\mathrm{gg} \rightarrow$ njets
- Time per Event on y-axis, number of outgoing partons on x-axis
- Compare CPU with C++, GPU with CUDA, and GPU with Kokkos
- Can see the CUDA is $100 x$ faster than the CPU for this example
-
- Kokkos is slightly less performant than CUDA at low multiplicity (low computational complexity), but reaches comparable performance as multiplicity increases

Simon

Precision Frontier

Johann Usovitsch

Precision test of the Standard Model Future prospects
Overview of future experiments as of 2022

Experiment uncertainty Theory uncertainty

	Experiment			
	ILC	CEPC	FCC-ee	Current
	$3-4$	3	10.3	4
$M_{W}[\mathrm{MeV}]$		Theory uncertainty		
$\sin ^{2} \theta_{\text {eff }}^{1}\left[10^{-5}\right]$	1	2.3	$? 0.6$	4.5
$\Gamma_{Z}[\mathrm{MeV}]$	0.8	0.5	0.10 .025	0.4
$R_{f}\left[10^{-5}\right]$	14	17	$\not 1$	15

- Recent update from [Alain Blondel, Patrick Janot, Eur.Phys.J.Plus 137 (2022) 1]
- To match the precision of the experiment we compute 3-loop and 4-loop Standard Model predictions

Badger

IR frontier AIID

N3LO splititng functions, analytic

- Numerical methods
- Avoiding algebraic complexity
- Physics informed
- Exploiting known structures

Simon
Badger

- Numerical methods
- Avoiding algebraic complexity
- Physics informed
- Exploiting known structures

Simon
Badger

- Numerical methods
- Avoiding algebraic complexity
- Physics informed
- Exploiting known structures

Numerical approaches

Uncertainties

Result

- 100 nodes
- 4 hidden layers
- $4 \mathrm{M} \times 800=3.2 \mathrm{~B}$ PS points

Machine learning the primitive

Numerical approaches - physics informed

$$
K_{n+1}=C_{0}+\sum_{\{i j k\}} C_{i j k} \frac{X_{i j k}^{1}}{X_{i j k}^{0}}
$$

Comparison to naive model

$15 / 22$

Learning K factors/matrix elements

- coefficients of antenna functions

Results: effective gain factors for LHC multi-jet processes

Analytic approaches

Finite fields

Local unitarity

N_{f} part @ ${ }^{3} \mathrm{LO} e^{+} e^{-} \rightarrow j j$

N_{f}^{2} part $@ N^{3} \mathrm{LO} \quad e^{+} e^{-} \rightarrow j j$

Channel	$\mathrm{f} 64 / \mathrm{f} 64$		Evaluation strategy	
	Time (s)	$f(\%)$	Time (s)	$f(\%)$
$g g \rightarrow g g g$	1.39	69	1.89	77
$g g \rightarrow \bar{q} q g$	1.35	91	1.37	91
$q g \rightarrow q g g$	1.34	92	1.57	93
$q \bar{q} \rightarrow g g g$	1.34	93	1.38	93
$\bar{q} Q \rightarrow Q \bar{q} g$	1.14	99	1.16	99
$\bar{q} \bar{Q} \rightarrow \bar{Q} g$	1.36	99	1.39	99
$\bar{q} g \rightarrow \bar{q} Q \bar{Q}$	1.36	99	1.39	99
$\bar{q} q \rightarrow Q \bar{Q} g$	1.14	99	1.14	99
$\bar{q} g \rightarrow \bar{q} q \bar{q}$	1.84	99	1.90	99
$\bar{q} \bar{q} \rightarrow \bar{q} \bar{q} g$	1.82	99	1.94	99
$\bar{q} q \rightarrow q \bar{q} g$	1.71	99	1.77	99
$g g \rightarrow \gamma \gamma g *$	9	99	26	99

Ryan Moodie (Turin) Two-loop five-point amplitudes in massless QCD with finite fields

Lorentz Invariant Phase Space

Charles R. Harris et al. "Array programming with NumPy". In: Nature 585 (2020), pp. 357-362. Dol:
 10.1038/s41586-020-2649-2

${ }^{2}$ Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18),
\qquad ${ }^{3}$ Aaron N
${ }^{4}$ Wolfram Decker et al. SIngular 4-3-0 - A computer algebra system for polynomial computations http://www.singular.uni-kl.de. Giuseppe De Laurentis

Non-perturbative physics

Simulation at multiple λ values
For a lattice action :
$S\left(\phi, m_{\text {fixed }}, \lambda\right) \longrightarrow p\left(\phi \mid \lambda_{i}\right)$

Ankur Singha

New Theory Prediction Pipeline
Produce FastKernel (FK) tables! Felix Hekhorn

Alberto Martini

Proton-proton @ 0.9-13 TeV, Predictions Gabor Biro

- So far: everything at $\sqrt{s}=7 \mathrm{TeV} \rightarrow$ the ONLY energy, where the models were trained
- Good agreement for all observable quantities as predictions for other LHC energies
- Multiplicity scaling?

Preparation of detector configuration

Beyond Standard Model

- Looking for new physics
- LHC and beyond
- Model independence
- Recasting
- Symmetries

Sven Krippendorf

No direct optimisation available: embedding in deep layer

We need: group input with the same meaning together

The LHC g.o.f. challenge

By analysing the LHC data, we would like to find evidence of failure of the SM theory, suggesting need of BSM.

This is a tremendously hard gof problem!
BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over ∞ many we can measure
Model-dependent H_{1}
BSM searches

- Optimise sensitivity to one
specific BSM model
- Fail to discover other models.
What if the right theoretical
model is not yet formulated?

Model-independent

 searches- Could reveal truly unexpected new physical laws.
- No hopes to find Optimal strategy. For a Good strategy, we need a
good choice of H_{w}.

vity to one What if the right theoretical model is not yet formulated?

Beyond Standard Model

The Normalised AutoEncoder

 Alo

 Alo}Theo Heimel

No complexity bias!
More rubust and reliable anomaly detection

Visualisation of the latent space Looks like a mess, but very useful for interpreting the results and diagnosing problems with the training!

Matrix Element Method

- Process with theory parameter α, hard-scattering momenta $x_{\text {hard }}$
- Likelihood at hard-scattering level given by differential cross section

$$
p\left(x_{\text {hard }} \mid \alpha\right)=\frac{1}{\sigma(\alpha)} \frac{\mathrm{d} \sigma(\alpha)}{\mathrm{d} x_{\text {hard }}}
$$

- Neyman-Pearson lemma \Longrightarrow optimal use of information
- Differential cross section only known analytically at hard-scattering level

Barry Dillon

Dilion - Universität Heidelberg - Anomaly searches for new physics at the LHC
Anomaly detection

Beyond Standard Model

\section*{The Normalised AutoEncoder

Theo Heimel

orrenson, Krämer

orrenson, Krämer

No complexity bias!
More rubust and reliable anomaly detection

Visualisation of the latent space
Looks like a mess, but very useful for interpreting the results and diagnosing problems with the training!

Matrix Element Method

- Process with theory parameter α, hard-scattering momenta $x_{\text {hard }}$
- Likelihood at hard-scattering level given by differential cross section

$$
p\left(x_{\text {hard }} \mid \alpha\right)=\frac{1}{\sigma(\alpha)} \frac{\mathrm{d} \sigma(\alpha)}{\mathrm{d} x_{\text {hard }}}
$$

- Neyman-Pearson lemma \Longrightarrow optimal use of information

Beyond Standard Model

Jamie Yellen

Dark Matter MC event generation

Henri Sieber

Useful Near-Term Quantum Algorithms

- Quantum Machine Learning (QML): Quantum advantages proven for

Learning complex patterns w/ quąntum feature maps (arXiv:2010.02174)
Exponential gain in predicting certain worst-case error (arXiv:2101.02464)
Quantum correlations used in generative modeling (arXiv:2101.08354)

- Quantum Chemistry and Materials Studies

Variational quantum eigensolvers (VQE) for energy estimation
Quantum simulation of dynamics of excitation
Study of quantum many-body phenomena

- Optimization Problems: Quantum Approximate Optimization Algorithm

IONQ

Quantum Machine Learning

Top Tagging through MPS

Jack
Araz

A hard decision making process
Our best classical (not quantum!) classifier with diameter, grading, histologic type, multifocality, in situ component, PgR :

| 70.8 (70.3-71.1) | $69.8(69.3-70.2)$ | $74.8(72.9-75.1)$ | $61.0(60.3-61.7)$ |
| :--- | :--- | :--- | :--- | reporting the $1^{\text {st_}} 3^{\text {rd }}$ interquartile range after 10 ten-fold cross-validations.

Domenico
Pomarico

Quantum Circuit Born machine (QCBM)

. Sample from a variational pure state $|\psi(\theta)\rangle$ by projective measurement with probability given by the Born rule: $\boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{x})=|\langle\boldsymbol{x} \mid \boldsymbol{\psi}(\boldsymbol{\theta})\rangle|^{2}$

Michele
2. Training (Hybrid loop):
KL divergence
Adversarial
Delgado and Hamilton, arXiv:2203.03578 (2022) Zoufal, et al., npj Quantum Inf 5 , 103 (2019). In the phase space. Kyrienko, et al., arXiv: 2202.08253 (2022).

3. Why the Maximum Mean Discrepancy MMD ?

```
Resource efficient for NISQ devices
```


Quantum chemistry and fluids

Variational quantum eigensolver

NEXT STEPS

- Build Quantum Circuit for the Collision and Streaming of qLBM
- Implement the Quantum Circuit in the Intel Quantum SDK
- Finally, Solve a simple Fluid Dynamics problem using this Circuit.
- Validate the results

Optimisation

Quantum annealers

Frameworks

$$
\begin{gathered}
\chi^{2}=\sum_{i j} V_{a} C_{a b}^{-1} V_{b}, \quad V_{a}=O_{a}^{(\exp)}-O_{a}^{(\mathrm{th})}(c) \\
O_{a}^{(\mathrm{th)}}(c)=A_{a}+\sum_{i} B_{a i} c_{i}+\sum_{i j} C_{a i j} c_{i} c_{j}
\end{gathered}
$$

Qibo
Qibo is an open-source full stack API for quantum simulation and quantum hardware control and calibration.

Andrea
Pasquale

The future

- Faster, more precise calculations and event generation
- New physics: model independent searches
- Towards Quantum Computing

There are a lot of exciting ideas for us. Happy coding!

Anke Biekötter - Leonardo Cosmai Joshua Davies - Latifa Elouadrhiri

