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for radio astronomy
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Astronomy papers on the arxiv that include the keywords
“machine learning”, “deep learning”, or “artificial
intelligence” in the abstract or title.

Scaife & Walmsley, in prep.

The SKA will be the world’s
largest radio observatory

It is designed to answer some
of the most important questions
IN modern astrophysics

It Is a big data machine




Mauch et al +, 2019, Apd, arXiv:1912.06212

Much of radio astronomy is driven
by population analyses

Populations need to be extracted
from observational data

New discoveries need to be
separated from known populations

Operations

> [3x3] Convolution + BatchNorm + RelU
> Max Pooling

(/) Attention Gate

(A) Aggregation Function

Bowles, AMS +, 2021, MNRAS, arXiv:2012.01248



AlAAS TRO

Survey Sources per Square Degree
NVSS (1998) ~50

FIRST (1995) ~90

LoTSS (2017) ~750

(AASlJﬁ:nan SKA Pathfinder) ~2900°

Experts: ~1 min per source (125,000 sources / yr of full time work)

Radio Galaxy Zoo: 300,000 sources 12,000 users over 5.5 years
Machine Learning: 100 million sources in ~15 min

*estimated using their goal of 60 million extragalactic synchrotron sources.

Mol, J David 2011 (LOFAR Beam former); https://ned.ipac.caltech.edu/level5/MarchO1/Andernach/Ander3.html; W. Williams Oct. 2019 Colloquium Slide
28; Johnston, S., Taylor, R., Bailes, M., et al. (2008); Image credit: NRAO/AUI/NSF
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® Ask forhelpt gher consensus

Work led by Micah Bowles
Approach 2: M:

® (senerative Ac

Machine Learning and the Physical
Sciences @ 36th Conference on

Neural Information Processing
Systems (NeurlPS 2022)

® Semi-supervis
® Sclf-supervise
[

Approach 3: Change the labels.

The challenge: 1ind 10 plain English semantic tags that can be used to label
radio galaxies in a way that allows us to separate scientific classes.
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Optical

Infared

TASK

TUTORIAL

We need your Comments!

Please describe the source:

® in the middle of the frame and any
associated emission

e use simple English

e avoid jargon

o e.g. refrain from typing FRI, WAT,
etc

e descriptions should be separated by

comma

® Jsers were asked to provide plain Englis
® [ xperts were asked to label the same ga
classifications.

Q@O CI=

I -

N annotations for a set of ~300 radio galaxies;

axies using a set of 22 astrophysical




. . . . O O Raw Annotations Bowles et al. 2022, accepted NIPS 2022; submitted MNRAS

Pre-Processing

OQ.‘QQWWM

Embed using Pre-Trained
Language Model

oo.oa@mm

i Aggregate with
Similar Entries

‘ . ‘ @ @ Averaged Vectors

Aggregate similar annotations to create “tags”

i Extract Nearest Token
@ o O
Train Model to Predict
Science Classes from Tags

Science [PFGdiCtiVE} Trained Model

Classes Model

Query Tag Importance
Tag Importances _ _
|dentify most important tags to form a taxonomy
Sort

Most Important Tags

Adjustments

Final Tags
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Bowles et al. 2022, accepted NIPS 2022; submitted MNRAS

- i & -
. . . - -
- s 1+
- - -
g .
= . ' ;
‘j - ' ) _ é ] -- : .’ | - | .
|A B g | |C 5% ol e A :
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g diffuse, double, edge brightened, extended, faint,
A 21h02m16s -54° 23" 36 hourglass \ (amorphous U traces host galaxy U bent) host, hourglass, jet. lobe, peak
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~inal thoughts ..

® [here are wider advantages to plain language descriptors of complex physical phenomena:
collaboration, inclusivity, language barriers, barriers to participation, interdisciplinarity;

® \oving away from historical labelling schemes mitigates against learned biases and allows for new
relationships (and potentially new physics) to be identitied;

® [he methodology we use is domain agnostic and can be repurposed for other branches of
astronomy and physics more widely;

® \ust be mindiul of the anglocentric nature of our current experiment and the potential biases that
may introduce.
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