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Astronomy papers on the arxiv that include the keywords 
“machine learning”, “deep learning”, or “artificial 
intelligence” in the abstract or title.

The SKA will be the world’s 
largest radio observatory

It is designed to answer some 
of the most important questions 

in modern astrophysics

It is a big data machine

Scaife & Walmsley, in prep. 
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Much of radio astronomy is driven 
by population analyses

Populations need to be extracted 
from observational data

New discoveries need to be 
separated from known populations



AI4ASTRO

Survey Sources per Square Degree

NVSS (1998) ~50

FIRST (1995) ~90

LoTSS (2017) ~750

ASKAP

(Australian SKA Pathfinder) ~2900*

Experts: ~1 min per source (125,000 sources / yr of full time work)
Radio Galaxy Zoo: 300,000 sources 12,000 users over 5.5 years
Machine Learning: 100 million sources in ~15 min

*estimated using their goal of 60 million extragalactic synchrotron sources.
Mol, J David 2011 (LOFAR Beam former); https://ned.ipac.caltech.edu/level5/March01/Andernach/Ander3.html; W. Williams Oct. 2019 Colloquium Slide 
28; Johnston, S., Taylor, R., Bailes, M., et al. (2008); Image credit: NRAO/AUI/NSF 
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The challenge: find 10 plain English semantic tags that can be used to label 
radio galaxies in a way that allows us to separate scientific classes. 

Work led by Micah Bowles

Machine Learning and the Physical 
Sciences @ 36th Conference on 
Neural Information Processing 
Systems (NeurIPS 2022)



Radio
Optical Infared

• Users were asked to provide plain English annotations for a set of ~300 radio galaxies; 
• Experts were asked to label the same galaxies using a set of 22 astrophysical 

classifications.



}
}

Aggregate similar annotations to create “tags”

Identify most important tags to form a taxonomy

Bowles et al. 2022, accepted NIPS 2022; submitted MNRAS 
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Final thoughts …

• There are wider advantages to plain language descriptors of complex physical phenomena: 
collaboration, inclusivity, language barriers, barriers to participation, interdisciplinarity; 

• Moving away from historical labelling schemes mitigates against learned biases and allows for new 
relationships (and potentially new physics) to be identified; 

•  The methodology we use is domain agnostic and can be repurposed for other branches of 
astronomy and physics more widely; 

• Must be mindful of the anglocentric nature of our current experiment and the potential biases that 
may introduce.


