A leading institution at the heart of the digital society

Microform and Macromolecules: Archiving *digital* data on *analog* and *biological* storage media

Raja Appuswamy

ACAT 2022

Growth of archival data

<u>"50% of 175ZB global datasphere will be enterprise data in 2025" [IDC]</u> <u>"80% data is cold, and increasing at 60% CAGR"</u> [Horison]

Current tape-based archival suffers from fundamental limitations

Challenges in Long-Term Digital Archival

"60% of archival data stored longer than 20 years" [SNIA 100 Year Archive]

Media decay

Media obsolescence

					Tape Drives				
				Version	LTO-6	LTO-5	LTO-4	LTO-3	LTO-2
		Canacity	Durability	LTO6	Read/Write			2. 0-	
		Capacity	Durability	LTO6 WORM	Read/Write				
			~5 yrs	LTO5	Read/Write	Read/Write		N	
	Flash	TBs		LTO5 WORM	Read/Write	Read/Write			
				LTO4	Read	Read/Write	Read/Write		
			~5 yrs	LTO4 WORM	Read	Read/Write	Read/Write		
	HDD	100s TBs		LTO3		Read	Read/Write	Read/Write	
				LTO3 WORM		Read	Read/Write	Read/Write	
	Таре	PBs	~10s vrs	LTO2			Read	Read/Write	Read/Write
				LTO1				Read	Read/Write
				Cleaning Tape	Supported	Supported	Supported	Supported	Supported

Format obsolescence

Net Effect: Migration-based Active Preservation

28 Apr 2017 | 15:00 GMT

The Lost Picture Show: Hollywood Archivists Can't Outpace Obsolescence

Studios invested heavily in magnetic-tape storage for film archiving but now struggle to keep up with the technology

By Marty Perlmutter

"There's going to be a large dead period," he told me, "from the late '90s through 2020, where most media will be lost."

Enterprise DBMS archives will soon face obsolescence issues

DNA as a digital storage media

Figure 1.2: The volumetric information density of conventional storage media vs. DNA

10⁷ higher density

Woolly mammoth on verge of resurrection, scientists reveal

Scientist leading 'de-extinction' effort says Harvard team could create hybrid mammoth-elephant embryo in two years

Durable, eternally relevant

Automation

EU FET project Oligoarchive focuses

on using DNA as an intelligent

storage medium

Application Layer

Encoding structured (database) and unstructured (imaging) data

OS Layer Advanced access paths (block, fs, ...)

Controller Layer Near-molecule query processing

Media Layer Synthesis and Sequencing

DNA Archival & Restoration: Challenges

- Each DNA is limited to a few hundred nucleotides
 - Data spread out across millions of DNA
- Not all DNA are created equal
 - G-C content limitations, homopolymers
- DNA has no addressing
 - Need to add ordering information in DNA

OligoArchive DNA Storage Pipeline

OligoArchive enables high-density digital archival on DNA DNA does not solve format obsolescence issues

DNA: New Format Obsolescence Issues

New media imposes a new format

- Storing data on DNA requires encoding data into oligos
- Retrieving data requires converting oligos back into digital data

Decoders are complex

Use error-correcting codes that require parity-check matrix and parameters for decoding

We want to archive media decoders

> Otherwise, can sequence oligos, but not decode

Analog media + emulation to bootstrap DNA storage

Ongoing collaboration with Vincent Joguin (EUPALIA), Martin Kunze (MoM/CERAMICRO)

Taking a Page from Digital Preservation

Emulation

- Technology used to simulate one hardware environment using another
- Emulation used in software preservation for getting old software to run on modern computing environments

Universal Emulation

- Observation: Often only need to preserve application logic, not current hardware/software stack
- Develop a virtual software processor with a very simple ISA that can be easily emulated. Develop software to target this virtual ISA.

Central idea: Universal <u>Layout</u> Emulation

Use a universal emulator to archive decoders with data

Analog Bootstrap for DNA Archives

Restoration Using Analog Bootstrap

Migration-Free, End-to-end Passive Preservation of Digital Data with Analog + Biological Media

Digital Preservation with Synthetic DNA: Danish National Archive Example

Danish National Archive

Preservation of digitally created/retro-digitized data since 1970

Digitized hand drawings of King Cristian IV

- Actual drawings date back to 1583-1591
- Material ranked as having unique national significance
- Part of a larger archival unit (TIFF, metadata)

Towards Holistic Passive Preservation

Solve format obsolescence with standards Solve media decay issues with DNA Solve media obsolescence with analog bootstrap

Conclusion

Contemporary magnetic media suffers from decay and obsolescence

Continuous migration expensive for long-term archival/preservation

DNA provides a biological alternative

- Dense, durable, eternal relevance (solves media decay)
- OligoArchive enables the use of DNA as a digital media

End-to-end passive preservation is feasible

- > Standard file formats (SIARD) to solve format obsolescence
- > Synthetic DNA: High-density, decay-free digital archival media
- > Analog media + emulation: Bootstrap for archiving DNA decoders

UAG UGA UAA

24/10/2022