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Introduction

o At the Belle Il experiment, eTe™ pairs are collided at the center of mass
energy of the Y (45) resonance producing pairs of B mesons

e The presence of invisible particles (e.g. neutrinos) in signal decays (Bisig) is
deduced by the energy-momentum imbalance after reconstructing the com-
panion B meson in the event (Biag)

e This task is complicated by the presence of thousands of decay modes the
B can decay into.

Figure 1: Schematic representation of a T (4.5) decay into two B mesons.

Full Event Interpretation Biag reconstruction with Deep Graph Neural Networks
Bhiag reconstruction performed at Belle |l with the Goal: reconstruct the Lowest Common Ancestor (LCA) matrix [2, 3]. It enables learning the decay
Full Event Interpretation (FEI)[1]: structure inclusively from the final state particles alone.

e Hierarchical approach based on Boosted De-

cision Trees Adjacency Matrix
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cays not considered.
Figure 3: Example of B decay described in terms of the adjacency and LCA matrices.
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Proof of concept on a phasespace dataset
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Figure 2: Schematic view of the FEI stages. Figure 4: Schematic representation of the Neural Relational Inference model.

Application to Belle Il simulation

Graph-based Full Event Interpretation (graFEIl) model based on graph network blocks [5] and trained on Y (4S) — BY(— vv)B(— X) simulated signal
events. Performances evaluated on simulated signal events and background from random combinations of tracks from B decays.
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Figure 5: Schematic view of the graFEl model. The graph keeps the same structure while its features are
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Figure 6: Signal efficiency and background rejection for FEI and graFEl.
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e Reconstructing the LCA matrix using graph neural networks allows to inclusively reconstruct
B decays without any prior assumption on the nature of the decay




