
Evolution of the CMS Submission Infrastructure to
support heterogeneous resources in the LHC Run 3

A. Pérez-Calero Yzquierdo1, Edita Kizinevic2, Farrukh Aftab Khan3, Hyunwoo Kim3, Marco Mascheroni4, Maria Acosta Flechas3,
Nikos Tsipinakis2 and Saqib Haleem5, on behalf of the CMS collaboration

1. CIEMAT and PIC (ES), 2. CERN, 3. Fermi National Accelerator Lab. (US), 4. Univ. of California San Diego (US), 5. National Center for Physics (PK)

● The CMS Submission Infrastructure: team in CMS Offline and Computing in charge of:
○ Organizing HTCondor and GlideinWMS operations in CMS,
○ Maintaining a Global Pool, an infrastructure of distributed compute resources where reconstruction,

simulation, and analysis of physics data takes place
○ Communicate CMS priorities to the development teams of glideinWMS and HTCondor

● In practice:
○ We operate a set of federated HTCondor pools which aggregate resources from 70 Grid sites, plus

non-Grid resources
○ We regularly hold meetings with HTCondor and glideinWMS developers where we discuss current

operational limitations, new feature requests and future scale requirements

CPU cores allocated to CMS over the past ~6 years (daily averages)

Federated HTCondor pools

● Despite still being opportunistic, a sizable collection of GPUs is already
available in the CMS Global Pool
○ Distributed over a number of sites, so far mainly in the US
○ Non-homogeneous collection of resources, no standard definition of a “GPU slot” exists

○ Scheduling workflows on GPUs relies on careful description of slot properties and workload requirements

● Challenges ahead
○ Efficient execution of CMS multi-steps jobs on CPU/GPU heterogeneous resources

○ Benchmarking and accounting required for realistic usage at scale in the WLCG context

○ Detailed inventory of available GPUs required to promote GPU resource exploitation by CMS users

○ Complex environment for operations, valuable debugging tool in condor_ssh_to_job, to be enabled in
CMS submission infrastructure

Two matchmaking stages in Submission Infrastructure: resource
allocation (GlideinWMS) and job to slot matchmaking (HTCondor)

1. GlideinWMS and pilot jobs
○ Submit resource requests on sites CEs in order to join

them into the Global HTCondor Pool

2. HTCondor matchmaking
○ Slot joins the Global Pool, then resources are negotiated

and assigned to payload jobs

GPU resources just follow the same general logic

All GPUs in use by CMS via the Submission Infrastructure are
opportunistic in nature so far, not pledged

● GPU resource description for first matchmaking coded in pilot factory entries
○ Limited information about the available GPUs (CEs that allow access to GPUs, queue names,

etc) and statically configured
● Once a pilot starts execution on remote resources, GPU properties are updated to the slot classad:

○ Use condor_gpu_discovery tool to retrieve most of the matchmaking attributes
○ Custom CMS script for CMS_CUDA_SUPPORTED_RUNTIMES

Access and use of GPUs under control of two main attributes in the job jdl:

● RequiresGPU = 1 && RequestGPUs>0, will trigger GPU pilot, then match the slot
● RequiresGPU = 0 && RequestGPUs>0, will not trigger GPU pilots but CAN match already available GPU

slots
● RequiresGPU = 0 && RequestGPUs=0 for purely CPU task

Collector
+

Negotiator
Job requirements
RequestGPUs = 1
RequiresGPU = 1
...
Requirements =
CUDACapability >= 3 &&
CUDARuntime = "11.4" &&
GPUMemoryMB = 8000 && …
...

...
Machine.CUDACapability in Job.CUDACapability
Job.CUDARuntime in
Machine.CMS_CUDA_SUPPORTED_RUNTIMES
Job.GPUs <= Machine.GPUs
...

GPU slot attributes
CPUs = 8
TotalSlotMemory = 20000
GPUs = 2
CUDACapability = 8.0
CUDAClockMhz = 1410.0
CUDAComputeUnits = 108
CUDACoresPerCU = 64
CUDADeviceName = "NVIDIA A100-PCIE-40GB"
CUDADriverVersion = 11.3
CUDAECCEnabled = true
CUDAGlobalMemoryMB = 40536
CUDAMaxSupportedVersion = 11030
CMS_CUDA_SUPPORTED_RUNTIMES =
10.1,10.2,11.0,11.1,...
CMS_NVIDIA_DRIVER_VERSION = 515.48.07

Running a scale and performance test on GPUs in the CMS
Global Pool

● Injected about 15k test jobs on the Global Pool, targeting any
available GPU for 24h: match as many GPUs as possible,
check how many and where they are and what type, etc

● Used a simple TensorFlow multiple (10k x 10k, float16)
random matrix multiplication script as GPU payload

● Recorded total execution time, correlated to accelerator
performance

● Results: Achieved a peak allocation of over 150 GPUs in
parallel in the Global Pool

Matchmaking jobs to GPUs: A very inhomogeneous
set of resources, requires a careful and detailed job
and slot description in order to select the correct slot for
each task

About 230 distinct opportunistic
GPUs discovered during the test

GPUs by CMS site GPUs by device type

GPUs by CUDA capability GPUs by NVIDIA driver version

Test job execution time as a function of site and GPU type

Further Challenges in the use of GPUs
● Benchmarking of GPUs is a requirement for pledge definition and resource acquisition

○ Predictable workflow runtimes, a key parameter for an efficient matchmaking of jobs to slots
■ hard now because of high heterogeneity among GPUs

● GPU usage accounting also requires GPU resource benchmarking
○ Could use HTCondor’s GPUsAverageUsage as proxy

■ Cron job uses the NVIDIA driver and tools libraries to query statistics on all of the GPUs to generate
resource usage report

Conclusions and Future work

