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Abstract

I LHCb’s High Level Trigger will process 5 TB/s of data. Machine learning
algorithms have the potential to improve fidelity and execute very quickly

I We are developing a hybrid deep learning algorithm to identify primary
and secondary vertices in pp collisions

I Previous DNN models architecture and performances presented at
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The Run 3 LHCb Detector & Baseline Trigger

Figure 1: LHCb detector schematic. Charged tracks are reconstructed
using data collected in the Vertex Locator (VELO) and 4 additional
tracking stations (UT, T1–T3). LHCb is ∼ 20 m long, 10 m high. Figure 2: Run 3 LHCb Trigger

Schematic

A hybrid ML approach to finding primary vertices

‣ Using KDEs (Kernel Density Estimators) to reduce sparse 3D 
data (tracks parameters ; 41M pixels) to feature-rich 1D 
data – kernel densities in z 

KDE distributions exhibit peaking structures near PV positions 
Hand-written KDE computations expensive!
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Updated input features

‣ Replaced input tracks information from IP (impact parameter) to 
error ellipsoid at point of closes approach (POCA) to beamline:

Each track represented as POCA-ellipsoid with 9 parameters 
defining central position (3 pars.) and volume/uncertainty (6 pars.) 
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State of the art architecture [implemented using PyTorch]
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Target histograms as proxies to learn

Performances: predicted position and efficiency

Predicted PVs position: 
‣ from mean predicted hist 
‣ small bias on 𝛥(z) of ~16 𝜇m 

Efficiency: 
‣matched if true PV in ±5 𝜎(z),  

with 𝜎(z) variance predicted hist
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Events:      10 000 
PVs:            52 512 
Found:       51 112  (97.3%) 
Missed:        1 400  
FP:                   609  (1.2%  ||  0.061/evt) 

LHCb simulation

LHCb simulation
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LHCb simulation

𝛥(z) = ztrue - zpred

Performances evolution (Eff. vs FP rate) and ongoing studies

I First end-to-end (tracks-to-PVs) DNN algorithm with high efficiencies
and improved false positive rate w.r.t. previous PV-finder models

I Ongoing deployment of inference engine in LHCb software stack

I Ongoing studies of PV-finder applications to other experimental conditions
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