
Distributed Data Processing Pipelines in ALFA
Alexey Rybalchenko, Dennis Klein, Mohammad Al-Turany
GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

Devices (actors)
Execute user defined tasks as operating system processes
that communicate through messages passed via channels.

Device
Communication Channels

Configuration/Control Plugins
State Machine

Data flow driven processing
Devices assembled into Topologies

Core Library
Abstract Message Queuing API

Transport Implementations

sh
m

em

Ze
ro

M
Q

OF
I

Scalability Protocols

PU
SH

/P
UL

L

PU
B/

SU
B

RE
Q/

RE
P

PA
IR

Unified Communication

In
tra

 n
od

e

In
te

r n
od

e

In
te

r t
hr

ea
d

+

Software Stack

Bo
os

t

Ne
tw

or
k

lib
ra

rie
s

(Z
er

oM
Q,

 n
an

om
sg

, O
FI

 li
bf

ab
ric

)

Si
m

ul
at

io
n

En
gi

ne
s

VG
M

. .
 .

RO
OT

GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

ALFA[1] is a modern C++ software framework for
simulation, reconstruction and analysis of particle
physics experiments. ALFA extends FairRoot[2] to
provide building blocks for highly parallelized and
data flow driven processing pipelines required by
the next generation of experiments, such as the
ALICE experiment at CERN or the FAIR
experiments.

node process address format ZeroMQ shmem OFI

intra- intra- inproc://endpoint ✓ n/a n/a

intra- inter-
ipc://endpoint ✓ ✓ X
tcp://host:port ✓ ✓ ✓

inter- inter-
tcp://host:port ✓ n/a ✓

verbs://host:port X n/a ✓

Library concepts:

● Main library concepts are Message and Channel which provide a
message queuing APIs (very similar to ZeroMQ) for inter/intra
node/process communication.

Framework concepts:

● Main framework concept is a Device which composes State
Machine, Program Options, and Command/Configuration Plugins.

● Devices are composed into Topologies that belong to a Session
which isolates them.

● The framework part is a thin and opinionated compositional layer.
However, a user could as well pick and compose any subset of
available FairMQ concepts and create his framework entity that
represents a actor (e.g. task, process) in the online processing
graph.

Ownership concepts:

● A Message and its content has single ownership by the process it
is created/received in.

● Transport may choose not to physically copy the buffer, but to
share across the messages. Modifying the buffer after a call to
the copy is undefined behaviour.

General goals:

● Unified API to different data transports.
● Hide transport-specific details from the user.
● Allow to transparently combine different transport in one device.
● Transport switch via configuration, without modifying user code.

FairMQ Transports

Core FairMQ Concepts

Device Control

New Shared Memory Features

Adoption Example

ALICE Experiment

Debugging & Monitoring

The upgraded ALICE experiment at CERN deploys FairMQ both on
the level of First Level Processors (FLPs), which include Readout
and local data processing, as well as on the level of Event
Processing Nodes (EPNs), where data aggregation and synchronous
global reconstruction take place.

Deployments on EPNs involve up to ~70000 running FairMQ devices
per session, on ~200 nodes. Single node handling ~350 FairMQ
devices communicating via shared memory. Topologies are
deployed and controlled via ODC through DDS and Slurm.

For the final output data rates of the upgraded experiment, this is
expected to increase to 1500 nodes.

FairMQ[3] is a C++ message queuing framework
and library that integrates standard industry data
transport technologies and provides building
blocks for creation of data flow actors and
pipelines. FairMQ hides transport details behind
an abstract interface and ensures best utilization
of the underlying transports (zero-copy, high
throughput). The framework does not impose any
format on the messages.

AliceO2
http://alice-o2.web.cern.ch/

BNMRoot
http://mpd.jinr.ru

MPDRoot
http://mpd.jinr.ru

EnsarRoot
http://igfae.usc.es/satnurse/ensarroot.html

ExpertRoot
http://er.jinr.ru/

ATTPCRootv2
https://github.com/ATTPC/ATTPCROOTv2

R3BRoot
https://www.gsi.de/r3b

PandaRoot
https://panda.gsi.de/

CbmRoot
https://fair-center.eu/for-users/experiments/c

bm.html

FairShip
http://ship.web.cern.ch/ship/

SofiaRoot AsyEosRoot

Us
er

s

node

node

References:
[1] M. Al-Turany et al. - “ALFA: The new ALICE-FAIR software framework”, Journal of Physics: Conference Series, Volume 664 (2015)
[2] https://github.com/FairRootGroup/FairRoot
[3] https://github.com/FairRootGroup/FairMQ
[4] http://zeromq.org/
[5] D. Klein et al. - “RDMA-accelerated data transport in ALFA”, EPJ Web of Conferences 214 (2019) CHEP 2018

FairMQ provides three transport implementations:
- TCP Network transport based on ZeroMQ[4].
- RDMA Network transport based on OFI[5].
- Shared memory transport for interprocess communication[6],

based on ZeroMQ and boost::interprocess library[7].

✓ - zero-copy ✓ - not zero-copy X – no support planned

Shared memory transport provides a tool to monitor and debug the
status of shared memory and existing messages. The tool provides
data for a given FairMQ session, such as:

● Used shared memory segments
● Their total and used size
● Info on creator process
● Number of devices in the session
● List of messages in a session, with their size, creator ID, memory

location, creation timestamp (available in debug mode)

Since the introduction of the Shared Memory transport in [5] several
new features have been added:

● Shared memory event notifications: Device can subscribe to
region creation/destruction events in order to obtain region
address, size and settings prior to data transfer. This can be used,
for example, to register the memory areas for use with GPU or
RDMA

● Buffer shared ownership: A performance optimization where
calling a Copy() method of the message class would create
additional message object for the same physical memory buffer.
Can be used, for example, when multiple processes need to
access the same buffer in parallel. However, modifying such
buffers is undefined behaviour.

● Support for custom alignment for message buffers.
● Externally created regions. Creating (and on demand quickly

resetting) shared memory outside of a session with a unique
identifier. This can be helpful when a long memory registration
process is involved, which in this case can be done only once,
while keeping (and resetting) the memory between sessions. No
two sessions can use it in parallel however.

A topology of FairMQ devices can be launched and controlled via
the ODC (Online Device Control) component[8]. ODC acts as a
command broker between an Experiment Control System and one or
many Topologies of FairMQ devices. ODC shows a homogeneous
topology state to the ECS.
The task of process deployment and command exchange between
them is implemented via APIs of the DDS (Dynamic Deployment
System) component[9].

[6] A. Rybalchenko et al. - “Shared Memory Transport for ALFA”, EPJ Web of Conferences 214 (2019) CHEP 2018
[7] https://www.boost.org/doc/libs/1_67_0/doc/html/interprocess.html
[8] https://github.com/FairRootGroup/ODC
[9] A. Lebedev and A. Manafov - “DDS: The Dynamic Deployment System”, EPJ Web of Conferences 214 (2019) CHEP 2018

#102

Fa
irM

Q

Pa
ra

m
et

er
/C

on
di

tio
n

M
an

ag
em

en
t

. .
 .

DD
S

(D
yn

am
ic

 D
ep

lo
ym

en
t)

Ge
om

et
ry

M
ag

ne
tic

 F
ie

ld

FairRoot
De

te
ct

or
 R

es
po

ns
e

ALFA

OD
C

(O
nl

in
e

De
vi

ce
 C

on
tro

l)

Worker Node
Worker Node

Worker NodeService NodeECS Node

gRPC

commands:
Initialize
Submit

Activate
Configure

SetProperties
GetState

Start
Stop
Reset

Terminate
Shutdown

Status

DDS session
DDS sessionDDS session

 dds plugin
 dds plugin

 dds plugin FairMQ device
(started by DDS Agent)

dds::tools_api

dds::intercom_api

odc-grpc-server

control/configure devices
odc::Topology

DDS session control
dds::tools_api::CSession

ODC provides a gRPC server component and a sample gRPC client.
A fixed set of commands is available to launch deployments with
FairMQ topologies, control device states and configure device
properties. A single server process can handle multiple DDS/FairMQ
sessions in parallel and reconnect to those which are running prior
to server launch.

A simple command line server is also provided that can be used for
testing without gRPC.

Resource management is delegated to the resource managers
supported by DDS. ALICE online deployment runs with Slurm.

Scalability Protocol ZeroMQ shmem OFI

pair (one-to-one) ✓ ✓ ✓

push/pull ✓ ✓ X

pub/sub ✓ X X

req/rep ✓ ✓ X

Scalability protocols, inspired by ZeroMQ, provide several
communication patterns:

These debugging features are also provided via an API for
integration in user software. This can be especially interesting for
message object information - knowing the data types contained in
the buffers can help to extract additional debugging info, e.g. from
data headers.

. .
 .

Software Tools

. .
 .

CM
ak

e

Go
og

le
 T

es
t

