Improving robustness of jet tagging algorithms with adversarial training

Annika Stein¹, Xavier Coubez^{1,2}, <u>Spandan Mondal¹</u>, Andrzej Novak¹, Alexander Schmidt¹

raw samples

performance

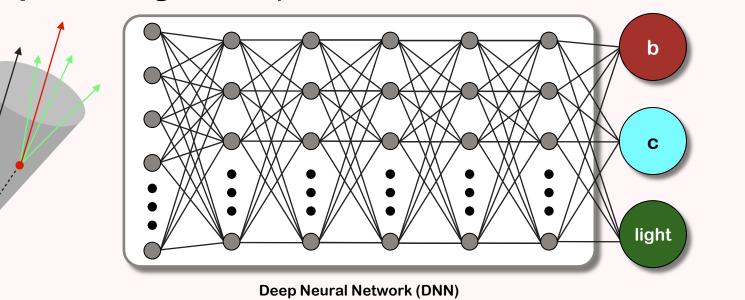
Effect

Presented at the 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research Bari, Italy, 23rd-28th October, 2022.

Probing vulnerability of a nominal jet tagging algorithm with the Fast Gradient Sign Method (FGSM)

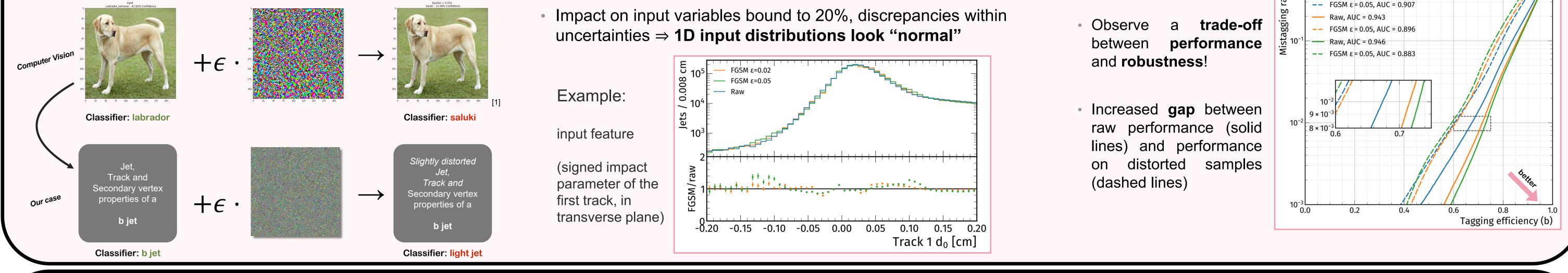
Goal of jet tagging algorithms: identify flavor of a jet's initiating particle (quark, gluon).

Exploit **deep learning** techniques, reliant on **accurate simulation!**

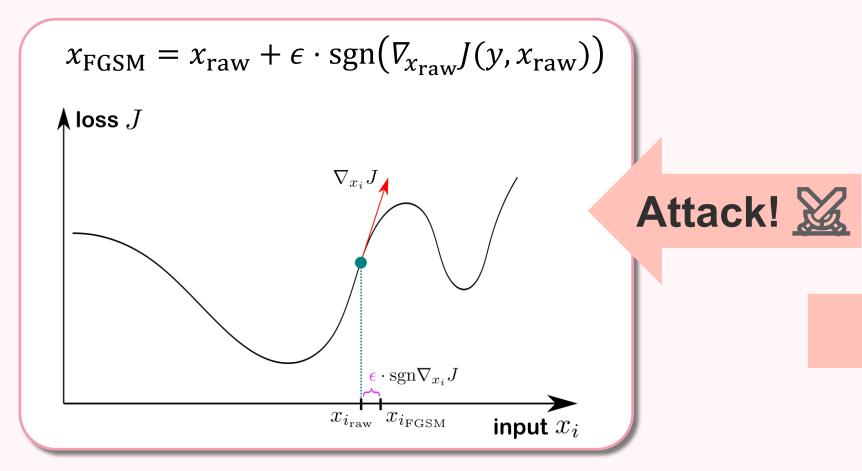


Physics analysis: Can validate each 1D input distribution within uncertainties. But what about mismodeled correlations?

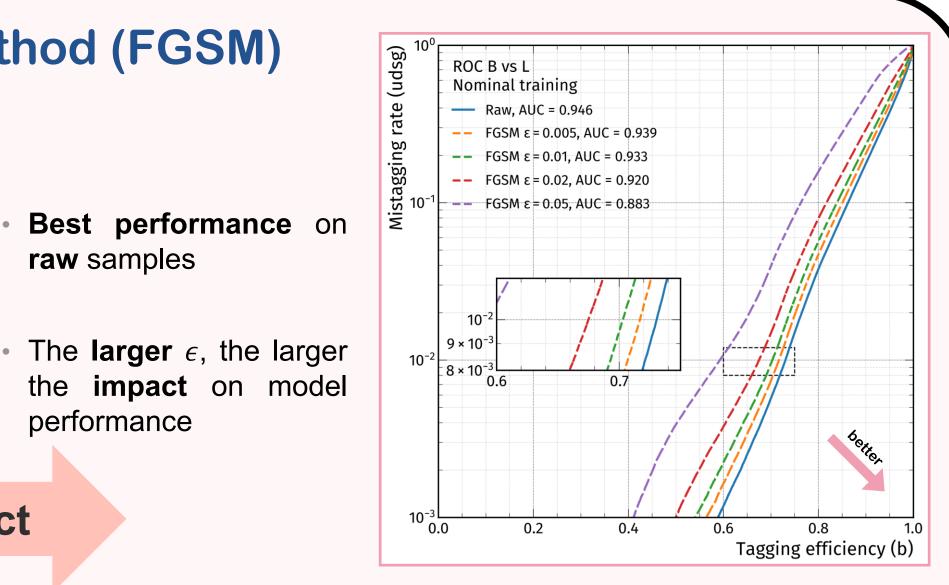
Benchmark problem: apply adversarial attacks (e.g. FGSM) on inputs \rightarrow Introduce "invisible" mismodelings.



Fast Gradient Sign Method maximizes loss function (with respect to inputs) \rightarrow worst-case scenario (~first order)



Drastic effect on performance — yet only minimal changes of the input features: Mimics invisible mismodelings!

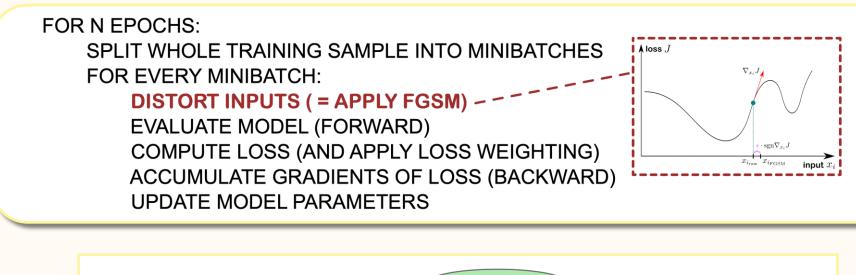


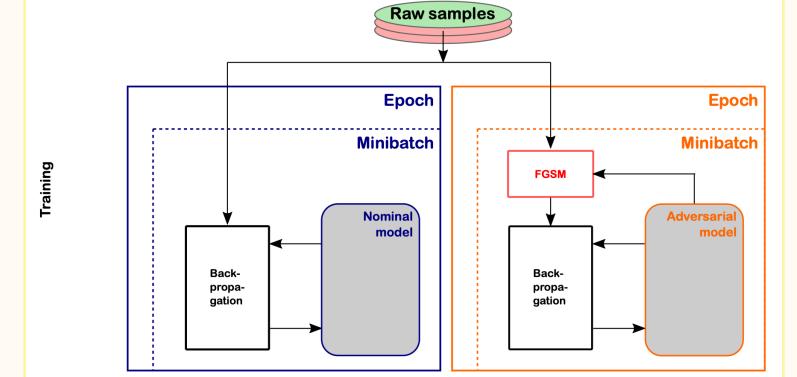
• More training epochs lead to better performance — but at the same time, the **susceptibility** towards adversarial attacks increases as well!

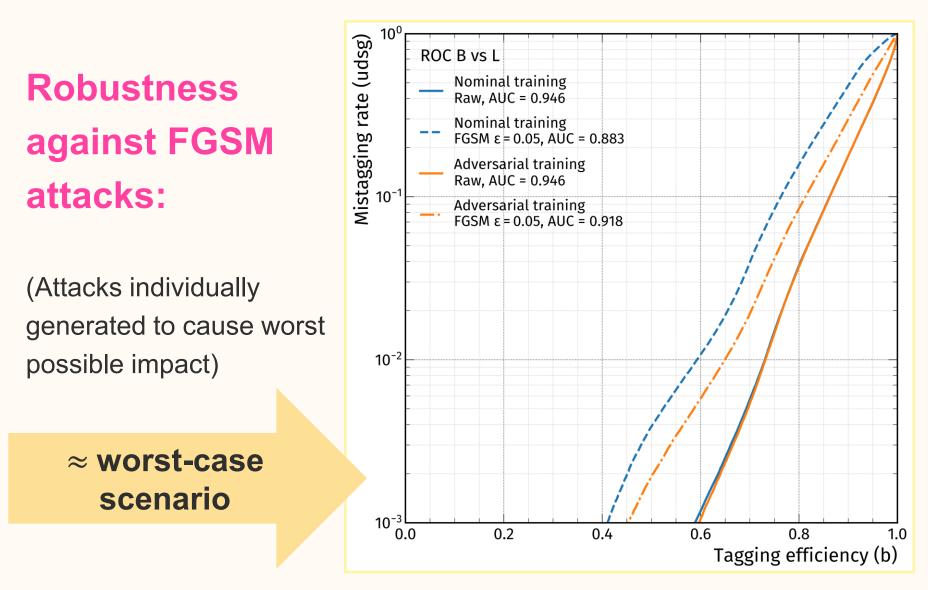
<u> </u>		
g rate (udsg	ROC B vs L	
	Nominal training	
	- — Raw, AUC = 0.935	
	– – FGSM ε = 0.05, AUC = 0.907	14
ĩ		

Adversarial training as a defense strategy

- Inject distorted inputs already during training phase
- Idea: model never sees raw inputs → less likely to learn simulation-specific artefacts



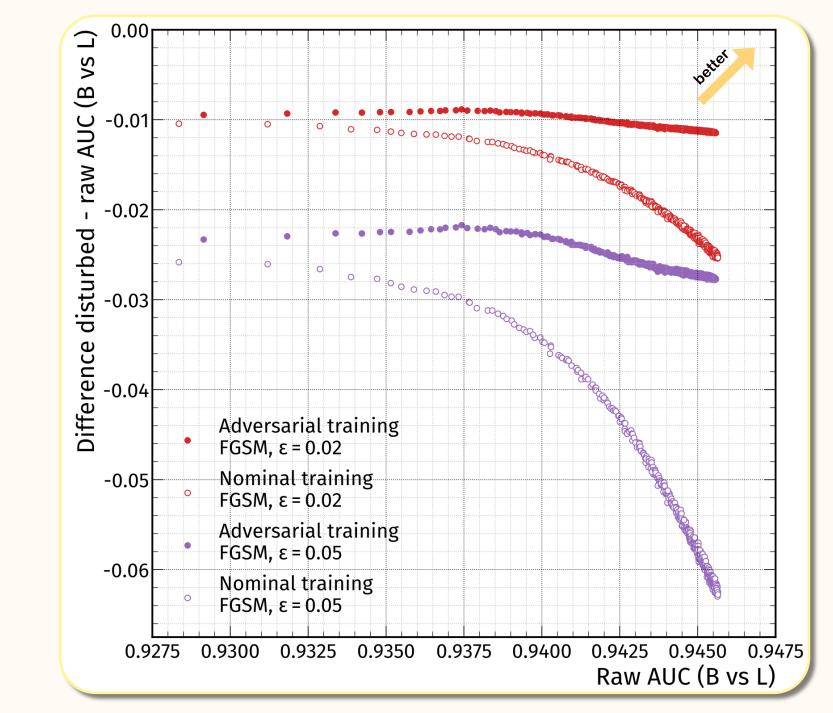




FGSM affects nominal training much more than adversarial training, with ~equal nominal performance!

Robustness as a function of training epochs

Evaluate nominal and adversarial training after several epochs / checkpoints during training and record raw performance (with BvsL AUC) and susceptibility towards adversarial attacks (difference between disturbed and raw AUC)



Comparison of nominal and adversarial **training** strategy → difference: **FGSM prior to backpropagation**

- Expect higher robustness and better generalization by introducing a saddle point problem — so, let's check if that is indeed the case!
- **Evaluation** compares predictions of two trainings for nominal and systematically distorted test samples

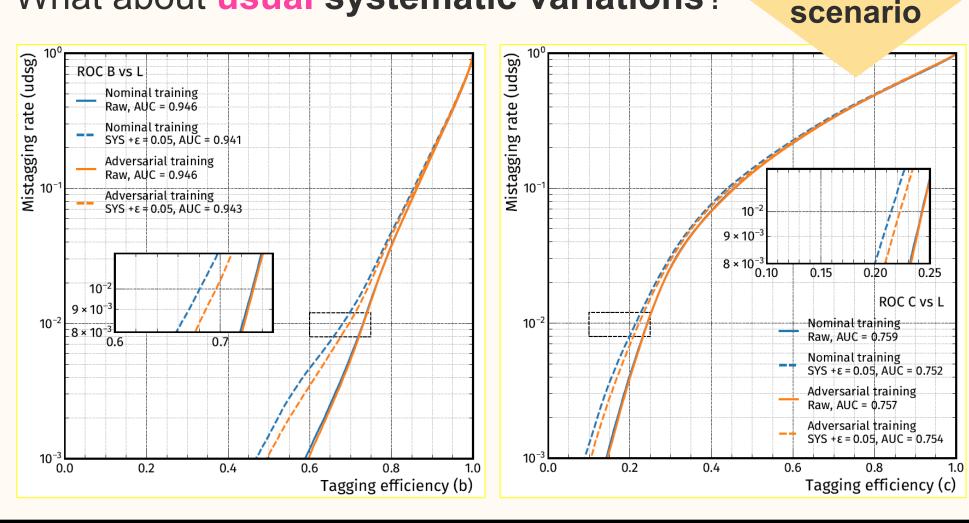
Adversarial training **does well** on nominal samples although it has never seen raw inputs during training!

Real-

istic

+ higher robustness, compared to nominal training

What about **usual systematic variations**?



High **density** of points at high performance: late stages of training with only small improvements, close to **convergence**

Nominal training: steep drop in robustness towards higher raw performance

Adversarial training maintains its robustness even at high raw **performance**, recovers robustness during training

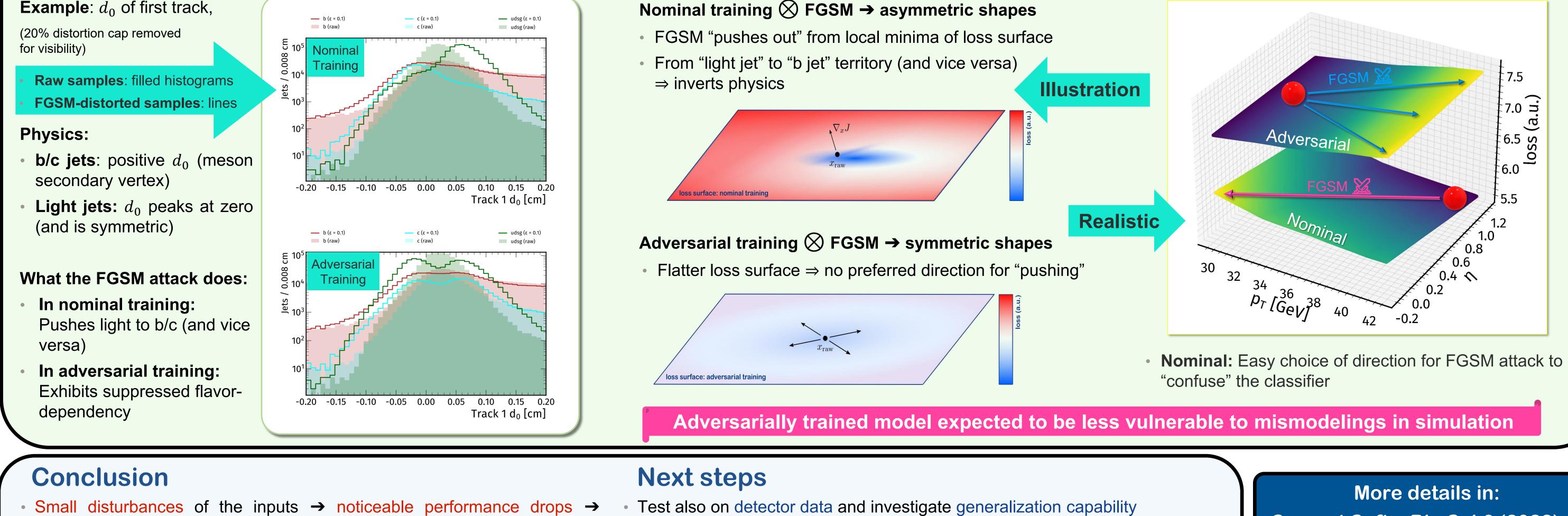
Trade-off is not entirely gone, but large improvement compared to nominal training

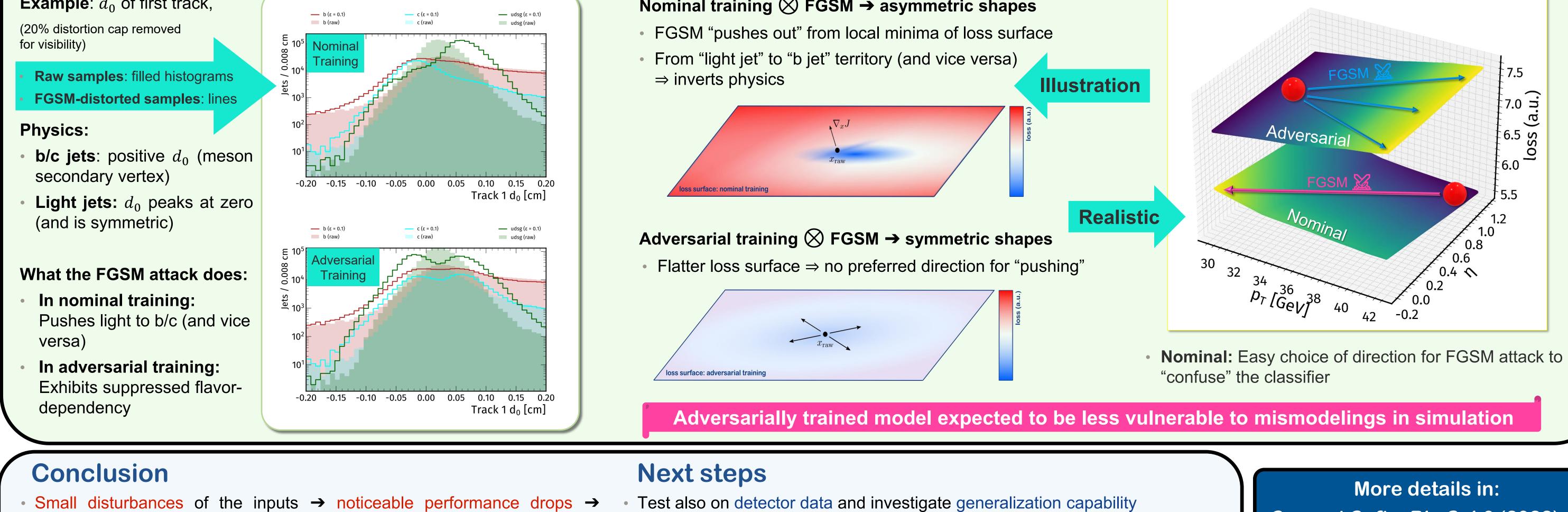
What makes the adversarial training robust? Exploring flavor dependence & geometric properties of the attack and defense

Example: d_0 of first track,

(20% distortion cap removed for visibility)

Raw samples: filled histograms FGSM-distorted samples: lines





- applicable & <u>concerning</u> for High Energy Physics
- Increased model performance comes with higher susceptibility towards adversarial attacks
- Robustness improves with adversarial training
- Apply to more complex NN structures (e.g. convolutional, or graph NN)
- Check vulnerability as a function of input feature space dimension
- Use more harmful attacks and build stronger defense (e.g. train against

Projected Gradient Descent, PGD)

Comput Softw Big Sci 6 (2022) 15 Click me!