
GSI Helmholtzzentrum für Schwerionenforschung GmbH

InfrastructureBuild Farm

Continuous Integration for the FairRoot Software Stack
Dennis Klein, Christian Tacke, Florian Uhlig, Mohammad Al-Turany
GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

ACAT 2022 Conference, Bari, Italy

References

https://indi.to/FfQGy

Ongoing and Future Work
● Publish pre-built CI container images on a registry and/or

CVMFS8, so the developer can re-create a CI environment for
a local interactive debugging session.

● Deploy and Operate a Github Actions Runner and explore if
Jenkins can be phased out

The relevant source code repositories are hosted in a
heterogeneous environment, some are on github.com, some on
various GitLab6 instances. GitLab natively comes with a CI
service. As of ~2021 only, github.com started to offer a CI
service. Because we started to use the CI method before, we
operate a Jenkins CI service as well. In anticipation of the still
quickly changing CI service landscape, we aim to keep a weak
dependency on those CI services only. In addition, we want to
support multiple instances in parallel and still share our build
farm. To achieve this, CI jobs are scheduled onto the build farm
via a shared queue - realized with the Slurm4 resource manager.

GitLab Runner Jenkins Agent

CI Build Farm

● 5 Linux hosts (20-28 CPU cores, 128-256GB RAM each) + 3 Mac
minis (2x x86_64, 1x aarch64) for public, untrusted CI jobs

● 3 Linux hosts (20-28 CPU cores, 128-256GB RAM each) for
private, trusted CI (mainly CD) jobs

● All hosts have direct attached SSD storage suitable for cross job
build caches

● Job run times range from a few minutes to multiple hours < 6h
depending on repo and change.

● Containerized Builds (on Linux) with Apptainer9
(Singularity) to enable heterogneous and large
build matrices

● Container Definitions public so the developer
may re-use the build environment locally, e.g.

will execute the given <cmd> in the same environment that is
also used by FairMQ’s CI jobs based on the Fedora 35 image.

apptainer exec \
 oras://ghcr.io/fairrootgroup/fairmq-dev/fedora-35-sif:latest <cmd>

● Advanced build log analysis with CDash5 and
the Warnings Next Generation Jenkins6 Plugin

● Automated generation of documentation

● Enforce Coding Conventions via
○ clang-format
○ clang-tidy

● Additional C++ Analysis via Address, Thread, UB, Leak Sanitizers

Lessons Learned
● Long Running CI jobs are acceptable
● Design CI checks cleanly from the bottom up and avoid

unnecessary dependencies on the CI system

Continuous

Integration

Coding Review / Merge Release

Report

Test

Build

Preview
Documentation

Code
Analysis

Continuous Integration
Continuous Integration (CI) is a modern software engineering
method to efficiently assure software quality. The underlying
idea is to continuously rebase (pending) feature branches onto
the latest version of the software repository and re-validate them
by a set of checks in an automated fashion. This approach
allows to naturally and efficiently resolve the merging of
concurrent development activities (by one or multiple authors).
The (partial) automation of the software release process (e.g.
generation of release assets, documentation, extended testing)
including the automated deployment is sometimes described by
the term Continuous Deployment (CD). However, the term CI is
often understood to subsume CD as well. In this work we adopt
this more general definition of CI.

The FairRoot Software Stack
The FairRoot1 software stack is a toolset for the simulation,
reconstruction, and analysis of high energy particle physics
experiments, currently used i.e. at FAIR/GSI, and CERN.

In the FairSoft2 source distribution the most important software
dependencies needed to run a FairRoot-based experiment
software framework are released for Linux and macOS while
further “system dependencies” are taken from the Linux
distribution and the Homebrew project3 on macOS. Notable
packages in a FairSoft release are
● ROOT (https://root.cern/),
● Boost (https://www.boost.org/),
● Geant3 (https://github.com/FairRootGroup/geant3),
● Geant4 (https://geant4.web.cern.ch/),
● VMC (https://github.com/vmc-project/vmc),
● HEPMC (http://hepmc.web.cern.ch/),
● Pythia6 (https://github.com/alisw/pythia6),
● Pythia8 (https://pythia.org/),
● Vc (https://github.com/VcDevel/Vc),
● VGM (https://github.com/vmc-project/vgm),
● CLHEP (http://proj-clhep.web.cern.ch/),
● DDS (http://dds.gsi.de/), and
● FairMQ (https://github.com/FairRootGroup/FairMQ).

AliceO2
http://alice-o2.web.cern.ch/

R3BRoot
https://www.gsi.de/r3b

PandaRoot
https://panda.gsi.de/

CbmRoot
https://fair-center.eu/for-users/experim

ents/cbm.html

FairSHiP
http://ship.web.cern.ch/ship/

The screenshot shows a failed clang-format
check viewed via CDash.

● Run Extensive Test Suites as part of the central CI cycle

The screenshot shows the status of the SLURM job queue filled with various CI jobs
(R for Running, PD for Pending)

Abstract
In this work we present recent improvements of the Continuous
Integration (CI, see beside) for the FairRoot software stack (see
beside). We discuss relevant development workflows and how
they were improved through automation. Furthermore, we present
our infrastructure detailing its hardware and software design
choices. The entire toolchain is composed of free and open
source software. Finally, this work concludes with lessons learned
from an operational as well as a user perspective and outlines
ideas for future improvements.

Saving Energy (Ongoing work)
● Typically, the CI build farm has a low overall utilization

with long idle periods and short peak loads
● Deployed an energy monitor
● Implemented the Slurm Power Save Suspend and

Resume hooks to shut off idle worker nodes and restart
them on-demand (via BMC signals)

● No long term data available yet, evaluation in the
proceedings paper

Github Actions Runner
(future)

submit CI jobs into shared queue

Developers can discover performed checks directly integrated in the
Repository User Interface (here github.com)

This example shows how a link to the doxygen based documentation preview in a FairRoot pull
request is provided to the reviewers/developers.

This screenshot depicts a breakdown dashboard for the captured clang-tidy warnings
for the FairRoot dev branch realized with the Warnings Next Generation Jenkins Plugin

This example shows the “changes” tab on a FairRoot pull request with a source code
annotation about a clang-tidy warning directly in the github.com user interface
(realized with the Warnings Next Generation Jenkins Plugin).

On CDash build and test logs can be
viewed. E.g. a click on a red cell in the
table above will reveal the logs of the

failed test or build (yellow indicates
warnings and green success).

[1] FairRoot - https://fairroot.gsi.de/
[2] FairSoft - https://github.com/FairRootGroup/FairSoft
[3] Homebrew - https://brew.sh/
[4] Slurm - https://slurm.schedmd.com/
[5] CDash - https://www.cdash.org/
[6] GitLab - https://about.gitlab.com/
[7] Jenkins - https://www.jenkins.io/

All URLs have been last visited on 19th October 2022.

[8] CVMFS - https://cernvm.cern.ch/fs/
[9] Apptainer - https://apptainer.org/

https://root.cern/
https://www.boost.org/
https://github.com/FairRootGroup/geant3
https://geant4.web.cern.ch/
https://github.com/vmc-project/vmc
http://hepmc.web.cern.ch/
https://github.com/alisw/pythia6
https://pythia.org/
https://github.com/VcDevel/Vc
https://github.com/vmc-project/vgm
http://proj-clhep.web.cern.ch/
http://dds.gsi.de/
https://github.com/FairRootGroup/FairMQ
https://fairroot.gsi.de/
https://github.com/FairRootGroup/FairSoft
https://brew.sh/
https://slurm.schedmd.com/
https://www.cdash.org/
https://about.gitlab.com/
https://www.jenkins.io/
https://cernvm.cern.ch/fs/
https://apptainer.org/

