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Cryogenic
phonon
detectors are one of the leading technologies to 
reach sensitivity
to
light
dark
matter
interactions
 in direct detection 
experiments.                       



They consist of a target crystal equipped with a superconducting 
thermometer, and a SQUID-based readout circuit. The system requires 
the careful
optimization of the heating of the thermometer (DAC) and 
the bias current in the readout circuit (IB). The standard approach for 
this is
 time
 consuming and requires manual
 interventions.



For future large-scale setups this task needs to be automated. We 
show in a simulation, that this is possible with reinforcement learning.


We built a simulation of cryogenic detectors. The system is governed 
by its thermal
 and
 electronic
 dynamics (two ODEs) [1], and noise 
contributions [2, 3]:  

Heat capacities C, thermal couplings G, temperatures T, thermometer 
current It and resistances Rt and Rs are not directly observable.                         



A self heating of the thermometer introduces history-dependency. We 
can describe the system as a Partially
Observable
Markov
Decision

Process
(POMPD)
with only one observable: the
SQUID
output.



The control problem is modelled 
as the interplay of an agent with 
an environment: in each time 
step the agent performs an 
action and receives a reward 
and new state. The agent learns 
to maximize the rewards over 
time.

      

 

State: DAC, IB, TPA, PH, RMS.         

Actions: Target DAC and IB. 

Reward:

We use an OpenAI Gym environment 
and a Stable Baselines 3 Soft Actor 
Critic (SAC) agent [4, 5, 6]. Online

learning can be realized with 
independent control/training threads, 
and communication through an 
MQTT feed (WIP). 
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Our approach requires less

measurement
time,
no
manual


interventions,
optimizes directy the 
sensitivity and is scalable to multi-

detector setups.




First runs in a live measurement are 
planned for the near future - stay 

tuned! 

In simulation, training takes 26
min

measurement
time
equivalent with 
realistic conditions (pile-ups, etc). 

Sweep the DAC for several settings 
of IB, choose setting with strongest 
response. Each sweep takes in our 
simulation 42
 min
 measurement

time
equivalent.




Standard
approach:

Reinforcement
learning
(ours):

Conclusion
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TPA ... energy of 
    injected signal
PH ... strength of 
           response
RMS ... noise of
           response

Fig. 1: Schematic of 
cryogenic detector. Fig. 2: Rendered output of simulator. 

Fig. 4: Online learning flow diagram. 

Fig. 3: Actor critic flow diagram. 

Fig. 5: Trajectory monitors. 
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