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1. Introduction
• Classifying HEP events, or separating sig-
nal events from the background, is an important
analysis task, in the search for new phenomena.
• Complex deep learning-based models have
been fundamental for achieving accurate perfor-
mance.
• However, the uncertainty estimation has
been traditionally neglected when deep learning-
based methods are used, despite its critical im-
portance in scientific applications.

2. BDL and Uncertainty Estimation
• Bayesian deep
learning (BDL)-
based methods
allow measur-
ing uncertainty
when classification is performed using deep
learning architectures.
• BDL models usually estimate uncertainty
by either placing probability distributions
over model weights, or by learning a direct
mapping to probabilistic outputs.
• This work is focused on the use of the Monte
Carlo Dropout (MC-Dropout) method, a
BDL technique proposed in [1] that is based on
Dropout [2].

3. Event Classification
We classify the events from two datasets:
• Higgs dataseta for identifying the sig-
nal: gg → H0 → W ∓H± → W ∓W ±h0 →
W ∓W ±bb̄ from the background.

Each event has with 21 low-level features (lep-
ton_pT, jet1pT, . . .), and 7 high level features
(m_bb, m_wbb, . . . ).
• Hadronization of the ω meson production
off nuclear targetsb.

ω → π+π−γγ

aBaldi et al. Searching for Exotic Particles in High-
energy Physics with Deep Learning. Nature Communi-
cations, 2014.

bA. Bórquez, Master’s thesis, UTFSM, Valparaíso,
Chile, 2021.

4. Monte Carlo Dropout
• Let F (x, ω) a DNN model with parameters w, the training set Dtrain := {X, Y }, X :=
{x1, . . . , xN } and Y := {y1, . . . , yN } are the inputs and outputs, respectively. Bayesian models
allow predictions on a new input point x∗, predicting y∗ = F (x∗, ω) given the learned weights ω.

The predictive distribution is given by p(y∗|x∗, X, Y ) =
∫

p(y∗|x∗, ω) p(ω|X, Y )︸ ︷︷ ︸
posterior dist.

dω (1)

• p(ω|X, Y ) in Eq. 1 is usually intractable, and Monte Carlo Dropout [1] allows us to approximate
it.

5. Experiments and Results

6. Conclusions and Future Work

• Preliminary results showed best performance using MC Dropout Drate = 0.2, but we still need
to improve classification performance. • High predictive entropy → p̂(y|x) ≈ 0.5, and low mutual
information → model gives similar probabilities in multiple forward passes. • Future tasks: to include
the uncertainty estimations in the training stage to improve performance and to combine BDL with
eXplainable Artificial Intelligence techniques, like SHAP.
GitHub: https://github.com/rpezoa/MCDropout_HEP_classif
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