

brunella.danzi@ba.infn.it

B

Cluster counting algorithms for particle identification at future colliders

Poster 223: C. Caputo¹, G. Chiarello², A. Corvaglia³, F. Cuna^{3,4}, **B. D'Anzi** ^{5,6,*}, N. De Filippis^{6,7}, W. Elmetenawee⁶, E. Gorini³, F. Grancagnolo³, M. Greco^{3,4}, S. Gribanov, K. Johnson⁸, A. Miccoli³, M. Panareo³, A. Popov, M. Primavera³, A. Taliercio¹, G. F. Tassielli³, A. Ventura³, S. Xin⁹ ACAT2022 – 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research (23 – 28 Oct 2022), Bari, Italy

INTRODUCTION

The large statistical fluctuations in the **ionization energy loss (dE/dx)** by charged particles in **gaseous detectors** implies that many measurements are needed along the particle track to get a precise mean, and this represent a limit to the **particle separation capabilities** that should be overcome in the design of future colliders [1]. The **cluster counting technique (dN/dx)** represents a valid alternative which takes advantage of the **Poisson nature** of the **primary ionization process** and offers a more statistically robust method to infer mass information.

It consists in **singling out**, in ever recorded detector signal, the **electron peak structures** related to the arrival of the electrons belonging to a **single primary ionization act** (cluster) on the anode wire.

CHALLENGES

The search for $\sim O(100)$ electron peaks and the cluster recognition in real waveform signals is extremely challenge because of their superimposition in the time scale even in low-noise conditions:

DATA SAMPLES AND ELECTRON FIND PEAK ALGORITHMS

To apply the cluster counting technique successfully:

- 1. Pulses associated to **electrons from different clusters** must have a little probability of overlapping in time.
- 2. The time distance between **electrons coming** from the **same cluster** must be small enough to **prevent overcounting**.

Recipe in Helium-based drift chambers:

- High front end bandwidth (\approx 1 GHz), S/N ratio > 8
- High sampling rate (> 2 GSa/s), \geq 12 bit

Data sests available (Beam Tests at CERN H8):

- Nov. 2021: 1.2 GSa/s, 1 cm, 2 cm and 3 cm drift-tube size cells, 15-30 μm wire diameter, 90/10 and 80/20 He:iC₄H₁₀ gas mixtures, 10 bit, 0(10⁵) gas gain, 165 GeV/c muon momentum, 15°, 30°, 45° and 60° between the anode wire direction and the ionizing tracks (α)
 ~100k events, on-going analysis with promising results!
- ***** July 2022: 1.2, 1.5, 2.0 GSa/s, 1 cm and 1.5 cm drift-tube size cells, 90/10, 80/20 and 85/15 He:iC₄H₁₀ gas mixtures, 10 bit, $O(10^5)$ gas gain, 40 and 180 GeV/c muon momenta, 15°- 60° α

Find good electron peak candidates at position bin n and amplitude A_n :

DERIVATIVE ALGORITHM

- Compute the first and second derivative from the **amplitude average** over **two consecutive bins (1.6 ns for 1.2 GSa/s)** and require that, at the **peak candidate position**, they are **less than** a **r.m.s. signal-related small quantity** and they increase (decrease) **before (after) the peak candidate position** of a r.m.s. signal-related small quantity.
- Require that the amplitude at the peak candidate position is greater than a r.m.s. signal-related small quantity and the amplitude difference among the peak candidate and the previous (next) signal amplitude is greater (less) than a r.m.s. signal-related small quantity.

NOTE:

 R.m.s. is a measurements of the noise level in the analog signal

RUNNING TEMPLATE ALGORITHM

- Define an electron pulse template based on experimental with a raising and falling exponential over a fixed number of bins (K_{tot}) and digitized (A(k)) according to the data sampling rate.
- Run over K_{tot} bins by comparing it to the subtracted and normalized data (build a sort of χ² and define a cut on it).
- Subtract the found peak to the signal spectrum and iterate the search and stop when no new peak is found.

¹Université Catholique de Louvain, Belgium ²Istituto Nazionale di Fisica Nucleare, Pisa, Italy ³Istituto Nazionale di Fisica Nucleare, Lecce, Italy ⁴Università del Salento, Italy ⁵Università degli Studi di Bari »Aldo Moro», Italy

UCLouvain

⁶Istituto Nazionale di Fisica Nucleare, Bari, Italy ⁷Politecnico di Bari ⁸Florida State University 9Chinese Academy of Sciences