
A cloud-based computing infrastructure for the

HERD cosmic-ray experiment

N Mori1, D Ciangottini2, M Duranti2, V Formato3, D Spiga2
1 INFN sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
2 INFN sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
3 INFN Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma, Italy

E-mail: mori@fi.infn.it

Abstract. The HERD experiment will perform direct cosmic-ray detection at the highest
ever reached energies, thanks to an innovative design that maximizes the acceptance, and its
placement on the future Chinese Space Station which will allow for an extended observation
period.

Significant computing and storage resources are foreseen to be needed in order to cope
with the necessities of a large community driving a big experimental device with an energy
reach above PeV for hadrons and multi-TeV for electrons and positrons. For example, at PeV
energies Monte Carlo simulations require a massive amount of computing power, and very large
simulated data sets are needed for detector performance studies like electron-proton rejection.

The HERD computing infrastructure is currently being investigated and prototyped in order
to provide a flexible, robust and easy to use cloud-based computing and storage platform. It
is based on technical solutions originally developed by the “Dynamic On Demand Analysis
Service” (DODAS) framework in the context of projects such as INDIGO-DataCloud, EOSC-
hub and XDC. It allows to seamlessly access both commercial and institutional cloud resources,
in order to efficiently make use of opportunistic resources to cope with high-demand periods
(like full dataset reprocessings and specialized Monte Carlo productions), as well transparently
integrate with on-premise computing resources managed by an HTCondor batch system. The
cloud platform also allows for an easy and efficient deployment of services for the collaboration
like calendar, document server, code repository etc. making use of available, free open source
solutions. Finally, an Indigo-IAM instance provides a Single-Sign-On service for access control
for the whole infrastructure.

1. Introduction
The availabilty of computing resources is one of the most important limiting factors in
determining the physics reach of modern High-Energy Physics (HEP) experiments. Each physics
result needs a given amount of data processing, and the total available computing power
effectively sets a limit on the explorable physics. In a global scenario where the demand for
computing power grows faster than the availability there is a significant effort towards efficiency
as a way to mitigate the issue. The optimization (especially for multithreading) of computing
algorithms and the usage of heterogeneous architectures like GPUs and FPGAs are two of
the most successful strategies towards efficiency, and are actively pursued by all the major
collaborations.

Still, there are some application domains for which these techniques are only partially
exploitable, and that are thus quite bound to a “conventional” computing approach.



For example, parametrized fast simulations might not precisely reproduce the rare events
constituting the irreducible proton background of electrons sample selected by means of
topological shower analisys in highly-segmented calorimeters. Full simulations are usually needed
to accurately reproduce this class of events, and current Monte Carlo toolkits like Fluka and
Geant4 run on CPU for a large extent and thus cannot e.g. fully take advantage of heterogeneous
systems yet. In a calorimetric high-energy experiment for direct cosmic-ray detection this
translates into the need of fully-simulating particle showers at energies exceeding the PeV scale
using just “conventional” CPU resources. While software optimizations can still play a major
role in squeezing some extra performance, it seems clear that adopting a computing model that
can easily profit of opportunistic resources providing additional computing power is a mandatory
requirement for some experiment categories (and obviously also a desirable feature for others).
This can also help in coping with high-demand periods that frequently happen e.g. in relatively
small collaborations due to fluctuations of the numebr of active persons or for experiments whose
data flow is not steady.

In the following, the desing and initial prototyping of the computing model for the High-
Energy cosmic-Radiation Detection (HERD) experiment is presented. HERD [1] is a next-
generation calorimeter for direct detection of cosmic-rays from space, aimed at measuring the
hadronic component of the spectrum up to energies of the order of PeV per nucleon, and the
electron+positron component at tens of TeV. The proposed model is based on the cloud approach
which can provide the flexibility and scalability described in the previous paragraph. The
adopted technical solutions are based on those developed by the DODAS project [2] and are
implemented on the INFN Cloud [3] infrastructure.

The cloud platform also provides support for solutions to peculiar needs of the HERD
collaboration; for example, the lack of an umbrella organization (like CERN for the HEP
community) providing services accessible to all the collaboration members can potentially lead
to fragmentation, with each participating institute providing its own services and the members
needing to have multiple accounts on different institutional infrastructures. On the other hand,
free services from commercial providers like Google are not generally available e.g. for the
Chinese members. Furthermore, commercial solutions might lead to vendor lock-in situations
that could generate management issues (especially for paid services), while a portable, free, open
source solution that can be deployed everywhere is more desirable. An implementation of a set
of services like calendar, file sharing etc. managed at collaboration level on cloud resources is
briefly described at the end of this paper, showing the potential of the cloud approach also for
this aspect.

2. General architecture
The prototype infrastructure is sketched in fig. 1, and is based on two pillars: a centralized
authentication and authorization (AuthN/Z) service, and a cloud storage. These two services
constitute the backbone of the system, dealing with critical issues like access control and data
persistence. They are used by the data processing resources and by all the collaboration services,
providing an environment where a Single-Sign-On (SSO) mechanism at collaboration level grants
access to all the experiment resources including the storage.

3. Authentication and authorization
AuthN/Z is provided by a dedicated INDIGO-IAM [4] instance for HERD (IAM-HERD). User
login is managed through a SAML federation with the Identity Providers (IdP) of the most
representative institutes participating to the experiment; support for other institutes is provided
through the eduGAIN [5] federation. Authentication on the different clients (i.e. experiment
services and resources) is done via OpenID Connect (OIDC) [6] tokens. A side benefit is that



Federated
Authentication

&
Authorization

Storage

Data processing

Figure 1. Overview of the general architecture. AuthN/Z and storage provide the foundation
services over which the whole system (e.g. data processing and collaboration services) is deployed
as cloud-based services (possibly on different cloud resources).

HERD members can access all the collaboration resources with the credentials from their home
institute.

4. Storage
A testbed for cloud storage has been deployed in terms of a MinIO [7] cluster (MinIO-HERD).
MinIO is an “enterprise-grade open source object storage” compatible with Amazon Simple
Storage Solution (S3) [8]. S3 is a well-established cloud technology, and the S3 protocol is
widely supported by cloud-native applications. Native S3 storage backends are available and
used for all the applications described in the following sections.

The MinIO-HERD testbed cluster is made of 4 instances of MinIO running on cloud Virtual
Machines (VM) providing the disk space to the cluster. In turn, disk space is made available to
VMs as Ceph [9] filesystems from a central storage pool located at the INFN CNAF data center
in Italy. The total amount of available raw space is 100 TB, and is provided by the DICE [10]
project. Storage has been configured as a 3+1 erasure coded pool with host failure domain, for
a total available space of about 67 TB. User authentication for cloud native tools like rclone is
based on OIDC tokens retrieved with the oidc-agent [11] helper, while application access (e.g.
for backend storage or backup snapshots) is managed via access/secret key pairs. This solution
ease the user access via IAM account while making the application access robust in case of IAM
temporary unavailability.

5. Data processing
The architecture of the data processing infrastructure and its interactions with other elements
is depicted in fig. 2. The core entity is a High Throughput Computing (HTC) cluster managed
by HTCondor [12], automatically deployed on-demand by the INFN Cloud orchestrator as
a Kubernetes [13] cluster. The deployment includes computing nodes running containerized
execution environments, the HTCondor schedd and additional services like the Kubernets
management console.

Users access the cluster by means of a HTCondor client environment running on user’s
machine (e.g. laptop) as a Docker [14] container. User AuthN with HTCondor is done via



Data processing

 on

Node

Node

Master

Dashboard

StorageAuthN/Z

User

Client

Gitlab 
CI

CVMFS

Figure 2. Overview of the data processing architecture

OIDC.
The distribution of the collaboration software is done with the CernVM-FS (CVMFS) [15]

distributed file system. The current setup consists of a VM running containerized CVMFS
Stratum0 + publisher services with S3 storage backend on MinIO-HERD. CVMFS clients
directly interfaces with MinIO-HERD via http, so actually the Stratum0 and the publisher
are used only to commit modifications to the software repository. CVMFS clients are mounted
on the computing nodes VMs and then bind-mounted in the execution environments, taking
advantage of CVMFS caching at host level. The software deployment on CVMFS has been fully
automated by means of Gitlab [16] Continuous Integration / Continuous Deployment (CI/CD).
The HERD Gitlab instance (see sect. 6) is used for hosting the source code and for managing
the development workflow of the collaboration software; CI/CD pipelines have been set up to
automatically build and install to CVMFS the master version and the tagged releases, for three
different supported Linux distributions.

A set of helper scripts distributed by the HERD collaboration are used to submit the data
processing jobs to the schedd from the client environments. The computing jobs make use of
the node-local scratch storage area for disk I/O during the job execution. Input/output files are
transferred from/to the S3 storage to/from the scratch area at the beginning/end of the job by
means of pre-signed URLs retrieved from MinIO-HERD by the helper scripts at job submission
time using the boto3-sts [17] library and the user’s credentials (token). User’s code libraries
(currently of size of few tens of MB) and job configuration files are uploaded from the client
environment to the schedd at job sumbission time using HTCondor transfer. The whole job
submission and execution process can be summarized as follows:

• The user prepares code libraries and job configuration files on the client environment

• The helper scripts retrieves pre-signed URLs for input/output files and prepare a job script
containing pre-/post-job file transfer from/to S3

• The helper scripts submit the job script to the schedd together with user’s libraries,
configuration files and pre-signed URLs

• The runtime environment:

– transfers the input files from S3 to the scratch storage using the pre-signed URLs
– launches the data processing executable (distributed via CVMFS with the collaboration

software) which processes the input file from the scratch storage and writes the output
to scratch storage as well

– transfers the output files from the scratch storage to S3 using the pre-signed URLs

The data processing infrastructure has been tested with real HERD simulation, reconstruction
and data analysis workloads, and meets all the requirements in terms of functionalities.



6. Collaboration services
The cloud approach offers the possibility to self-implement a set of web services at collaboration
level, thanks to flexibly-provided resources and the availability of (almost) ready-to-use, free,
open-source solutions packaged container images. This aspect has been pursued to develop a
generic, open and reusable model that meets the HERD requirements and constraints described
in the introduction.

Freely-available docker images have been customized (e.g. to integrate HERD settings and
automatic backup/restore to/from S3) for a set of services:

• Events calendar (based on NextCloud)

• Documents server (NextCloud)

• Software development platform (Gitlab)

• Web site (Grav)

• Meetings management (Indico)

• Chat (Matrix/Synapse)

All the services are integrated in the HERD infrastructure, featuring SSO via IAM-HERD,
S3 storage on MinIO-HERD, and automatic backup and restore. Currently all the services are
in production stage, except for Indico and Matrix which are still being evaluated.

7. Status and outlook
The HERD cloud computing infrastructure is currently terminating the first prototyping phase.
The objectives of this stage were to identify the key technologies and deploy a first demonstration
testbed to test the compliance with the full workflow, and have been fully met. Future work
is foreseen to address the remaining technical issues; for example, pre-signed URLs by design
expire after one week, so they are not suited for long-queuing/long-running jobs, being retrieved
at job submission time, and a different authentication method/workflow for S3 job I/O must
be identified. There are also plans to evaluate the possibility to distribute user’s code also via
CVMFS. On a broader scope, the federation of resources from different clouds/datacenters is a
major topic regarding the future direction of this work. The choice of HTCondor as the batch
managent system is a first step in this sense, given the native ways it offers to perform compute
resource federation. Data storage and management is another prominent topic for federated
environments: the choice of S3 as the storage backend brings compatibility with many HEP
de-facto standard solutions that can be leveraged to achieve compatibility with the datalake
storage paradigm, and the usage of Rucio [18] as the data manager system is currently foreseen.

The in-house implementaion of collaboration services on the cloud demonstrated the
feasibility of such approach for small/medium collaborations, with an affordable and relatively
low burden that makes this option a feasible one for collaborations experiencing constraints
similar to HERD. Currently the services run as single instances; High Availability deployments
will be considered in future depending on the reliability of the single-instance setup on INFN
Cloud VMs, while service load is not foreseen to be an issue given the size of the collaboration.
The portfolio will eventually be expanded should the necessity for more services come out in
future.

To summarize, the cloud approach so far has proven itself capable of solving many issues
related to the diverse computing model and workflow needs of the HERD collaboration. No
showstopper has currently been identified, and the collaboration is steadily pursuing this
approach for all the future developments of its computing infrastructure.



8. Acknowledgments
The authors thank the INFN Cloud staff for continuous support. The authors acknowledge the
support of the DICE project under grant n. 101017207, and of the Italian Space Agency (ASI)
under ASI-INFN Agreement No. 2021-43-HH.0.

References
[1] Gargano F et al. 2021 Proc. of Sc. (ICRC2021) 026
[2] DODAS Project: https://dodas-ts.github.io/dodas-doc/
[3] INFN Cloud: https://www.cloud.infn.it/
[4] Ceccanti A et al. 2016 J.Phys.Conf.Ser. 898 102016
[5] eduGAIN interfederation: https://edugain.org/
[6] OnenID Connect: https://openid.net/connect/
[7] MinIO object storage: https://min.io/
[8] Amazon S3: https://aws.amazon.com/s3/
[9] Ceph distributed storage: https://ceph.io/en/

[10] DICE project: https://www.dice-eosc.eu/
[11] oidc-agent credentials helper: https://github.com/indigo-dc/oidc-agent
[12] Fajardo E M et al. 2015 J. Phys. Conf. Ser. 664 062014
[13] Kubernetes software: https://kubernetes.io
[14] Docker platform: https://www.docker.com/
[15] Blomer J et al. 2011 J. Phys. Conf. Ser. 331 042003
[16] Gitlab software: https://about.gitlab.com
[17] boto3-sts library: https://github.com/dodas-ts/boto3sts
[18] Rucio data management: https://rucio.cern.ch/

https://dodas-ts.github.io/dodas-doc/
https://www.cloud.infn.it/
https://edugain.org/
https://openid.net/connect/
https://min.io/
https://aws.amazon.com/s3/
https://ceph.io/en/
https://www.dice-eosc.eu/
https://github.com/indigo-dc/oidc-agent
https://kubernetes.io
https://www.docker.com/
https://about.gitlab.com
https://github.com/dodas-ts/boto3sts
https://rucio.cern.ch/

