
The new GPU-based HPC cluster at ReCaS-Bari

G Vino1, M Antonacci1, A Italiano1, D Elia1 and G Donvito1

1 INFN, Unit of Bari (Italy)

E-mail: gioacchino.vino@ba.infn.it

Abstract. The ReCaS-Bari datacenter enriches its service portfolio providing a new
GPU-based HPC cluster for Bari University and INFN users. This new service is ideal for
complex applications that require a massively parallel processing architecture. The cluster is
equipped with cutting edge Nvidia GPUs, like V100 and A100. Artificial intelligence, complex
model simulation (weather and earthquake forecasts, molecular dynamics and galaxy
formation) and all high precision floating-point based applications are possible candidates to be
executed on the new service. The cluster is made up of 13 nodes and has a total computing
resource of 2500 cpus, 20 TB RAM, 6 TB local SSD disk per node and 47 high performance
GPUs (27 Nvidia A100 and 20 Nvidia V100). Each node can access the ReCaS-Bari
distributed storage based on GPFS amounting to 8 PB. Applications are executed only within
Docker containers, conferring to the HPC/GPU cluster features like easy application
configuration and execution, reliability, flexibility and security. Users can request web-based
IDEs (JupyterLab and RStudio) and/or a job orchestrator for submitting complex workflows
represented as DAG (Directed Acyclic Graphs). Apache Mesos, a distributed resource
management system, is used to orchestrate the usage of a computer cluster equipped with
GPUs in a scientific environment. Chronos, Marathon combined with Mesos, provide features
like scalability, fault-tolerant, resource constraints and workflow orchestration. Users
appreciated an impressive speed-up of their applications up to a factor of 10. The evolution of
the service, where a performance evaluation of Kubernetes as a replacement for Apache
Mesos, is in the pipeline.

Keywords: Apache Mesos, Jupyter, Docker, Workflow, Nvidia, machine learning

1. Introduction
In recent decades, computers have been increasingly used in scientific research, beginning as
supporting tools and progressing to the creation of scientific applications capable of performing
complex analysis, simulations and mathematical modelling. Today, numerous areas of scientific
research use scientific applications such as astrophysics, meteorology, biology, chemistry, physics,
geology and engineering. Scientific applications can be used to simulate and predict the behaviour of
complex models, such as weather and earthquake forecasts, molecular dynamics and galaxy formation
or focus on whole-genome sequencing. Some of the most advanced technologies used in scientific
applications are artificial intelligence, machine learning and parallel processing on Graphics
Processing Units (GPUs), which enable efficient and fast computations on large amounts of data. Year
after year, the amount of data and the complexity of scientific applications grow, requiring the use of
scalable and powerful parallel processing architecture. The use of computer clusters equipped with



GPUs represents an interesting option for taking advantage of the hardware acceleration offered by
these devices in scientific applications.

University of Bari [1] and INFN [2] also showed such tendency and the increasing interest in a
high-performance computing infrastructure has resulted in the creation of a new GPU-based HPC
cluster at ReCaS-Bari [3]. The most popular research areas at the University of Bari and INFN
requesting such a computing power are machine learning and deep learning, whole-genome
sequencing and meteorological forecasting. To deal with the enormous required computing loads and
large data to process, these scientific applications require a high availability of parallel hardware
accelerators, such as those provided by GPU equipped clusters or HPC[4] clusters. Without such
parallel processing architecture, applications that can run on personal computers or small servers
would take an unacceptable amount of time to complete the workload. In this scenario, a framework
capable of managing different workloads, taking advantage of the available parallel computational
accelerators, is the best solution for supporting these heterogeneous scientific applications. Our goal is
to build a parallel computing infrastructure that can support the majority of research teams in the
execution of their scientific applications. In this paper a GPU-based HPC cluster is described although
the HPC functionalities are in the pipeline.

The hardware aspects of the cluster are presented in Section 2, more details about the used
frameworks and the architecture are provided in Section 3, whereas in Section 4 the user experience
and a user case are presented and finally observations about the work and future improvements are
discussed in Section 5.

2. Hardware
The ReCaS-Bari datacenter has been equipped with new high performance hardware to support the
execution of scientific applications. In order to reach this goal, features like GPU equipped nodes,
cluster manager, web-based interactive development environment (IDEs) and workflow manager were
taken into account during the design. In the following table, hardware details about the cluster are
provided.

Table 1. Hardware details of the GPU-based HPC cluster.

Nodes 13
CPUs +2500

Memory +20 TB
GPUs

GPFS size
Local SSD Disk

Network
Os

47 (20 V100 and 27 A100)
8 PB
6 TB

10 Gbps
CentOs 7

The hardware characteristics of the cluster have been chosen to satisfy all possible applications
running on it. Some tools may require large memory to load all datasets, while others require high I/O
from the distributed file systems, while still others require high performance GPUs with dedicated
memory, high CPUs availability and large bandwidth to move big amounts of data. The GPUs used are
Nvidia V100 32 GB and A100 40GB GPUs [5], which are well supported by most GPU-based
applications. The provided distributed file system is a cluster file system from IBM General Parallel
File System (GPFS) [6].

3. Software
Scientific applications rarely have a monolithic structure, preferring a modular approach. Container
technology plays an important role because it allows for more secure, isolated, replicable and faster
execution, resulting in “containerized” applications that are made up of one or more containers. In this
scenario, the container orchestrator and the cluster management take a leading role.



3.1. Middleware
In 2020, when this cluster was designed, two open source container orchestrators were considered:
Kubernetes[7] and Apache Mesos[8]. Kubernetes is an "open-source system for automating
deployment, scaling, and management of containerized applications" released by Google in 2014 and
Apache Mesos is an open source system able to manage a cluster of distributed nodes and execute
distributed applications, namely frameworks. Both Mesos and Kubernetes can run fault-tolerant
“containerized” GPU-based applications and support health checks, load balancing and scaling. From
our point of view, Kubernetes and Apache Mesos both fulfil our requirements. We opted for Mesos
over Kubernetes for its ease of management and because our team had prior expertise with it.

Apache Mesos manages computing resources belonging to each node (CPU, memory, storage,
GPU) creating a single pool of resources available for distributed applications. Frameworks could be
logically splitted in tasks, each of them executed on a given node of the cluster. Apache Mesos has a
master/agent architecture and can be configured with high availability (HA) to eliminate single points
of failure. Mesos works along with two frameworks that simplify batch jobs and long-running service
orchestrators, respectively Chronos[9] and Marathon[10]. Chronos is a distributed and fault-tolerant
scheduler that runs on top of Apache Mesos. It accepts scheduled and dependent jobs allowing the
execution of complex workflows, represented as directed acyclic graphs (DAGs). Chronos includes a
graphical user interface for adding, deleting, listing, modifying and running jobs. It provides a REST
API so that the above operations can also be executed via command line. A JSON format file is used
to describe the job. Marathon is a container orchestration framework which runs on Mesos, acting as a
framework for the Mesos cluster. Marathon provides several benefits like service discovery, load
balancing and metrics. Thanks to health checks, it ensures long-running services are always in
execution. A user-friendly web-based UI and REST API are provided. Marathon is a powerful way to
run other Mesos frameworks such as Chronos; in this case, if a failure is detected, Marathon will start
another Chronos instance in a working node. Also Marathon uses a task description in JSON format,
which can be submitted via UI or REST API.

A container is a standard unit of software that packages up code and all its dependencies so that the
application can be moved from one computing environment to another and can run quickly and
reliably. Docker container images [11] are lightweight, self-contained, secure, scalable and fast.
Containers isolate software from its environment, ensuring that it works consistently despite
differences such as those between development and staging. One of the advantages of Docker is the
availability of official images from companies or communities (Nvidia, TensorFlow, etc.)

Unfortunately, there is no open-source solution capable of monitoring cluster node resource usage,
framework resource usage, tasks state, user resource usage in real-time, in a single unified interface.
As a result, a dedicated tool has been implemented. Sensors retrieve information from Mesos and
Marathon metric endpoints, GPU dedicated information, running container processes and combine it
with data retrieved from telegraf [12]. The gathered information is stored in a Neo4J [13] instance, a
graph database. Finally, a consumer collects data from the database and inserts them in an InfluxDB
[14] instance, a time-series database, in order to be visualised in Grafana [15] dashboards.

3.2. User services
JupyterLab [16] is a web-based IDE for notebooks, code and data. Notebooks are documents that
contain computer code as well as rich text elements, such as equations, figures, links, etc. It is widely
used in scientific applications due to its interactive and exploratory computing, multiple programming
languages and visualisation support. Text editor, terminal, directory viewer, and a wide range of
graphical functions are just a few of its features.

Although the Python programming language is widely used for a variety of applications such as
data analysis, scientific computing and artificial intelligence, it is slow to execute. This issue could be
mitigated by using optimised libraries. For this reason Dask [17] and Nvidia RAPIDS [18] Python
libraries were selected. Dask scales Python libraries such as numpy, pandas, and scikit-learn, as well as
generic Python code. Allows the same code to be run on a laptop or on a cluster. Dask can run tasks on
Kubernetes, cloud or HPC. RAPIDS is an open-source software libraries and APIs suite designed for
running data science pipelines entirely on GPUs. Taking advantage of their experience in GPUs,



machine learning, deep learning and high-performance computing, they are able to speed-up
considerably the execution code. The ReCaS-Bari JupyterLab container image has been built starting
from the Tensorflow Jupyter Docker image [19]. Additional libraries and packages are installed (Dask
and Nvidia RAPIDS among them) and the same OS user used in the ReCaS-Bari is created in order to
maintain compatibility with GPFS ownerships. Its execution on the cluster is obtained through
Marathon and a JSON file describing the task, containing information about the user, docker image,
constraints, Python module to install, GPFS paths to mount and Marathon-LB port.

Rstudio [20] web-based IDE has been provided for those users with more experience in the R
programming language. RStudio provides features quite similar to those Jupyter has such as
web-based access, workbench support and file system navigator. The container has been built starting
from the Nvidia cuda base docker image [21] and on top of that RStudio suite and LDAP [22]
authentication are installed and configured. To run it on the cluster, a Marathon JSON file describing
the task is created and then submitted to Marathon.

Chronos provides the possibility to select the user who will execute jobs. Without rules, malicious
behaviours may happen. To avoid this situation, the official Chronos repository [23] was forked and an
environment variable was added to force the execution of containers with a given user. Then, a Docker
container image was built from the patched code. In this scenario, each requested user has his/her own
Chronos instance described with a dedicated Marathon JSON format file where the environment
variable is defined. Moreover, in addition to the existing submission methods, a new submission
method has been implemented. It consists of an in-house Python library that simplifies the submission
of complex workflows. At the time of this writing, this library has not been published yet since
important improvements are still being made during interactions with users.

3.3. Architecture
The installed Apache Mesos version is the latest, the 1.11.0. A single node master was used and a
non-HA configuration was implemented because until now a pre-production architecture has been
used. Marathon as well was configured to run in a single instance. All long-running and user-requested
applications like JupyterLab, Rstudio and Chronos are deployed via Marathon. All these applications
have been containerized in Docker containers and stored in the ReCaS Docker private registry,
preferred to DockerHub due its rate limit. Harbor [24], configured with LDAP authentication, is the
found solution for the deployment of the ReCaS Docker private registry.

In Figure 1 is shown the system architecture with a JupyterLab instance running on a node.

Figure 1. Figure shows system architecture with a JupyterLab instance running on a node.

When a user requires a JupyterLab instance, the Marathon JSON file describing the task is created,
containing information about the user, docker image, constraints, Python modules to install, GPFS
paths to mount, Marathon-LB port and then submitted in Marathon. If constraints are fulfilled, the



JupyterLab instance is launched and its host port is exported to the internet by Marathon Load
Balancer. Finally the user can access its JupyterLab instance using the URL provided by the admin.

4. User experience and performance
After the implementation and initial test phases, a large number of research teams expressed their
interest in the ReCaS-Bari GPU-cluster capabilities to speed up their applications. Artificial
Intelligence, whole-genome sequencing and image processing are the most popular application
categories running on the cluster. On average, the speed-up detected from users corresponds to a factor
4-5 (max 10-15). The overall knowledge of users on Docker container and parallel/distributed
computing is low, leading us to invest in guides and courses. Half of these teams requested a
web-based IDE, JupyterLab or RStudio. The latter half requested the capability to submit GPU-based
jobs. Most of these research teams have not yet published their work so it is not possible to cite or
share overall results, differently from computing related measurements. On average, users are pretty
satisfied concerning the access to the web-based tools by which access data stored in GPFS, the
provided support and the improved execution time of their applications. A single research work can be
cited here to demonstrate the performance of the described new GPU-based HPC cluster at
ReCaS-Bari. It is a preliminary physics research with title "Multi-charm baryons: Ξcc

++ and Ωcc
+"

published in the ALICE 3 Letter of Intent [25]. In this work, a machine learning algorithm has been
used to improve the detection of rare particles obtained at the Large Hadron Collider [26] for the
ALICE experiment [27]. The tuned XGBoost algorithm [28] improved the traditional and manual
approach up to a factor of 4-5 in the region of interest. The work consisted of an initial development
phase, where a JupyterLab instance was used to write the code and for the model coarse-grain tuning.
The second phase consisted of the conversion of the code in a pipeline, to be submitted via Chronos,
for fine tuning the model. Thanks to the GPU-cluster performance and capabilities, the presented
result has been obtained in a few weeks despite the enormous dataset size, amounting to 6 TB. Figure
2 shows how containers are deployed on the cluster and the resulting pipeline.

Figure 2. Figure shows how containers are deployed on the cluster and the resulting pipeline.

5. Conclusions
A new GPU-based HPC cluster at ReCaS-Bari and its impact on the scientific application running on
it was presented. The cluster is composed of 13 nodes, 2500 CPUs, 20TB of RAM, 47 Nvidia GPUs
(20 V100 and 27 A100), where each node has access to a 6TB fast local SSD disk and to the 8PB
GPFS distributed file system. Apache Mesos, along with Marathon and Chronos, showed a great
capability to manage cluster nodes and orchestrate containers, both for long running services and batch
jobs, in a fault-tolerant, scalable, secure, isolating and efficient way. On top of that, two service types
are successfully provided to the users: web-based IDEs (JupyterLab and RStudio) and the submission
of GPU-based complex workflows. Users are pretty satisfied with their application performance and
on average a speed-up with a factor 4-5 has been measured (max 10-15).



Thanks to the accumulated experience, improvements have been planned. Now, we don’t have any
strong reasons to still prefer Apache Mesos over Kubernetes. Its large community provides new
versions, with new features and bug-fixing, quite often than Apache Mesos, where the last version is at
least 2 years old. This will lead us to find alternatives for Marathon and Chronos. Kubernetes allows
job submission but there is no support for complex workflows. Many open source solutions are
available like Apache Airflow [29], KubeFlow [30] and MLFlow [31]. R kernel will be added to
Jupyter so that an unique web-based IDE will be used. The integration between Jupyter, Dask and
Kubernetes will be implemented to overcome the current limitation concerning the JupyterLab
instance that reserves resources, in favour of resource release after an configurable inactive period.
LDAP authentication for JupyterHub has been implemented and tested and its merging with IAM [32]
will be investigated. Apache Spark will be added to the service portfolio enabling the execution of big
data workloads. The cluster will be integrated in the national INFN-DataCloud PaaS [33], to be part
of the federated computing nodes available for INFN-Cloud. Finally, aiming to have a HPC cluster,
will investigate the use of Infiniband to speed-up the internode connections.

References
[1] University of Bari, https://www.uniba.it
[2] INFN, https://home.infn.it
[3] ReCaS-Bari, https://www.recas-bari.it
[4] HPC, https://en.wikipedia.org/wiki/High_performance_computing
[5] Nvidia GPUs, https://www.nvidia.com
[6] GPFS, https://www.ibm.com/docs/en/gpfs
[7] Kubernetes, https://kubernetes.io/
[8] Apache Mesos, https://mesos.apache.org/
[9] Chronos, https://mesos.github.io/chronos/
[10] Marathon, https://mesosphere.github.io/marathon/
[11] Docker, https://www.docker.com/
[12] Telegraf, https://www.influxdata.com/time-series-platform/telegraf/
[13] Neo4J, https://neo4j.com/
[14] InfluxDB, https://www.influxdata.com/products/influxdb-overview/
[15] Grafana, https://grafana.com/
[16] JupyterLab, https://jupyter.org/
[17] Dask, https://www.dask.org/
[18] Nvidia-rapids, https://rapids.ai/
[19] Tensorflow jupyter docker image https://www.tensorflow.org/install/docker
[20] RStudio, https://posit.co/
[21] Nvidia cuda base docker image, https://hub.docker.com/r/nvidia/cuda
[22] LDAP, https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
[23] Chronos repository, https://github.com/mesos/chronos
[24] Harbor, https://goharbor.io/
[25] ALICE 3 Letter of intent, https://cds.cern.ch/record/2803563, 78-86
[26] LHC, https://home.cern/science/accelerators/large-hadron-collider
[27] ALICE experiment, https://alice.cern/
[28] XGBoost, https://xgboost.readthedocs.io/en/stable/
[29] Apache Airflow, https://airflow.apache.org/
[30] Kubeflow, https://www.kubeflow.org/
[31] Mlflow, https://mlflow.org/
[32] IAM, https://en.wikipedia.org/wiki/Identity_management
[33] INFN-DataCloud Paas, https://indigo-paas.cloud.ba.infn.it/home/login


