
Precision Cascade: A novel algorithm for multi-precision

extreme compression

J. Gonzalez1, J. Lauret2, Y. Ying3, G. Van Buren2, M. Burtscher4, P.
Canal5, I. A. Cali3, R. Nunez1

1 Accelogic LLC, Weston, Florida, USA
2 Brookhaven National Laboratory, Upton, New York, USA
3 MIT, Cambridge, Massachusetts, USA
4 Texas State University, San Marcos, Texas, USA
5 Fermi National Laboratory, Batavia, Illinois, USA

E-mail: kying@alum.mit.edu

Abstract. Lossy compression algorithms are incredibly useful due to powerful compression
results. However, lossy compression has historically presented a trade-off between the retained
precision and the resulting size of data compressed with a lossy algorithm. Previously, we intro-
duced BLAST, a state-of-the-art compression algorithm developed by Accelogic. We presented
results that demonstrated BLAST can achieve a compression factor that undeniably surpasses
compression algorithms currently available in the ROOT framework. However, the leading con-
cern of utilizing the lossy compression technique is the delayed realization that more precision
is necessary. This precision may have been irretrievably lost in an effort to decrease storage
size. Thus, there is immense value in retaining higher precision data in reserve. Though, in the
era of exabyte computing, it becomes extremely inefficient and costly to duplicate data stored
at different compressive precision values. A tiered cascade of stored precision optimizes data
storage and resolves these fundamental concerns.

Accelogic has developed a game-changing compression technique, known as “Precision Cas-
cade”, which enables higher precision to be stored separately without duplicating information.
With this novel method, varying levels of precision can be retrieved, potentially minimizing live
storage space. Preliminary results from STAR and CMS demonstrate that multiple layers of
precision can be stored and retrieved without significant penalty to the compression ratios and
(de)compression speeds, when compared to the single-precision BLAST baseline.

In this paper, we will present the integration of Accelogic’s “Precision Cascade” into the ROOT
framework, with the principal purpose of enabling high-energy physics experiments to leverage
this state-of-the-art algorithm with minimal friction. We also present our progress in exploring
storage reduction and speed performance with this new compression tool in realistic exam-
ples from both STAR and CMS experiments and feel we are ready to deliver the compression
algorithm to the wider community.

1. Introduction
Lossy compression algorithms have been long applied to sound and image processing, but
sophisticated algorithms have struggled to infiltrate the physics world. However, the need for
data compression algorithms has increased drastically with the growth of large-scale numerical



data, especially in the High Energy and Nuclear Physics (HENP) community [1]. Accelogic,
LLC has pioneered a novel compression theory, known as ”Compressive Computing” [2, 3]. At
the root of this theory lies a radically new concept known as ”sensitivity”, which has changed
our understanding of numerical precision, and introduced intelligent lossy compression to the
realm of physics.

At the forefront of this revolution is the idea that most data in practice is comprised of many
”zero-information-bearing bits”, or ”zibbits”, which are bits that carry zero or insignificant
information. Therefore, one can make the argument that removing such bits is not a true loss,
deeming compression techniques targeted at them to be only ”quasi-lossy”. The reason behind
this is due to inherent physical limitations in measurement or precision, as well as insignificance
of the data, in terms of numerical scale [1, 4].

Using these concepts, Accelogic has engineered a powerful compression algorithm library,
known as BLAST, offering stunning lossy and lossless compression algorithms. Previously,
we demonstrated that Accelogic’s lossy compression surpasses common compression algorithm
baselines, such as gzip [5] and float16. We performed case studies on datasets from the STAR
and CMS experiments using BLAST. The CMS study was performed on binary files, while
the STAR study was performed within ROOT, an object-oriented data analysis framework
commonly used for HENP [6]. In both case studies with STAR and CMS, the BLAST algorithms
(at acceptable compression levels that offer mid-precision compression) are able to outperform
gzip by approximately 2-4× [4].

We emphasize that our previous results prove lossy compression works. However, we also
determined that compression levels above a certain threshold of loss may deteriorate the data
too much, such that the lossy dataset results in strong deviations from the original dataset.
Such instances voice concerns over too much precision irretrievably lost.

2. Precision Cascade
In the existing landscape, the user would need to lossy compress duplicates of the dataset, at
various compression levels, in order to store multiple copies of varying precision. However, the
duplication of data wastes storage space, defeating the purpose of these extreme compression
algorithms. Thus, these concerns beg the question: can we retrieve varying levels of precision
without being repetitive?

Accelogic has developed a novel technique, known as Precision Cascade, in response to this
question. Precision Cascade allows higher precision to be stored separately without duplicating
information, by storing higher precision bits in separate files. These files can then be later
combined with lower precision files in order to retrieve higher levels of precision, while the user
retains control over defining the levels of precision.

3. Results on CMS and STAR datasets
We assessed the performance of the algorithm on subsets of data from the STAR and CMS
experiments. Using ROOT, we applied the Precision Cascade compression algorithms to
extracted branches from particle data within the experiment datasets, and compared the
results against the inside-of-ROOT single-precision BLAST baseline, as well the default ROOT
compression algorithm. In the following section, we demonstrate results for the three metrics
we assessed: compression ratio, compression speed, and decompression speed.

3.1. Compression Ratio
The primary metric for assessing a compression algorithm’s performance is the compression
ratio, which represents how much larger the original file is than the compressed (ratio between
original and compressed). The compression ratios for Precision Cascade are shown against the
BLAST and ROOT baselines in Figure 1 below.



(a) CMS Compression Ratios (b) STAR Compression Ratios

Figure 1: Comparison of compression ratio against BLAST single-precision baseline and ROOT
default compression algorithms

The multi-colored bars represent the compression ratio of individual columns of stored particle
information in the dataset for the various tiers of Precision Cascade precision, as labeled on the
x-axis. The overall Precision Cascade compression ratio is shown as the black dot, and is
compared against the BLAST single-precision baseline at each precision level, denoted by the
dotted black line. The lossless ROOT compression baseline is shown in gray bars and markers
for the individual columns, and the overall ROOT baseline compression ratio is shown as the
gray dashed line.

In both CMS and STAR, we demonstrate that Precision Cascade at the first compression
tier, level 51, is approximately double that of the ROOT default, and the same as the BLAST
default. Even at the second compression tier, level 43, Precision Cascade slightly outperforms
the ROOT default, although it decreases in performance relative to the BLAST baseline at
compression level 43. This can be attributed to overhead for Precision Cascade. Retrieving
the entire dataset (losslessly) demonstrates similar or worse levels of compression relative to the
ROOT baseline. We emphasize that our results demonstrate there is non-negligible overhead
for storing precision in different locations, but this may be worthwhile, as the lossy compression
still outperforms the ROOT baseline.

3.2. Compression Speed
Secondary to compression ratio, we also assessed speed as a measure of performance. The
compression speed is shown in Figure 2. With the multi-precision compression algorithm, the
compression occurs all at once, thus we are unable to assess the compression speeds of each
compression tier individually.

Compared to the ROOT baseline, we see a clear decrease in performance by approximately
3×. Compared to the BLAST single-precision baseline, the Precision Cascade speed
counterintuitively outperforms the higher precision (level 43) BLAST speed, but manages to
underperform relative to the lower precision (level 51) BLAST. Thus, we conclude that utilizing
lossy compression may result in slower compression speeds compared to lossless ROOT baselines.

3.3. Decompression Speed
Alongside compression speed, we also assessed decompression speed. The decompression speeds
for each compression tier are shown in Figure 3.



(a) CMS Compression Speeds (b) STAR Compression Speeds

Figure 2: Comparison of compression speed against BLAST single-precision baseline and ROOT
default compression algorithms

(a) CMS Decompression Speeds (b) STAR Decompression Speeds

Figure 3: Comparison of decompression speed against BLAST single-precision baseline and
ROOT default compression algorithms

As the precision grows, the decompression speed decreases. For CMS, the decompression
speed at compression level 51 is slightly faster than the ROOT default, though the higher
precision levels fall below baseline. For STAR, all the decompression speeds fall short of the
ROOT baseline by approximately 3×. These compression/decompression speeds demonstrate
the cost of multi-precision, extreme compression, compared to existing lossless algorithms.

4. Utility
Despite slower (de)compression speeds, there is still great advantage in piece-wise lossy
compression. One of the primary benefits of Precision Cascade is that it allows the user
to store highly compressed data in expensive fast access storage, and the remaining tiers in
cheaper archival storage. Certain analyses that require less precision can quickly access the high
compression data, while analyses that require more precision are still able to retrieve it later via
archival storage.



Some analyses require more precision, but fewer statistics. With Precision Cascade, the user
also can control which files are stored with higher precision. In an experiment with many files,
users have the option of storing higher precision files for only a subset of the files comprising
the entire dataset.

Furthermore, another large advantage of Precision Cascade is that the user can rebuild the
original dataset, losslessly, if necessary. For example, the user may need to recalibrate precision
utilizing the original dataset. Alternatively, the user may realize that too much precision is lost
in the lossy tiers. However, this precision is retrievable with Precision Cascade.

5. ROOT Integration
BLAST has already been integrated and tested in ROOT. The BLAST compression suite can be
applied to all branches containing homogeneous numerical types (e.g. split branches), with the
exception of Double32 t and Float16 t, which are already lossy and thus not supported. BLAST
is lossy for floating point branches and lossless for integer branches.

Precision Cascade is supported only for floating type values, namely doubles and floats. The
output files are named according to the cascade tier and the suffix is customizable. Currently, the
format is ${original filename} precisioncascade [1,2,3,etc.].root. When reading the
output file, all cascade files are automatically used if present, invisible to the user. For example,
immediately after writing to the output, reading back would be done with full precision. If
the last cascade tier file is removed, then reading back would be done with high precision (this
equates to compression level 43 in the CMS/STAR case study above).

A code example for Precision Cascade usage is shown below. The user must define a vector
of strictly decreasing Int t values representing the compression levels for the tiers of Precision
Cascade. The user then defines a PrecisionCascadeCompressionConfig, with parameters for
the compression suite (kBLAST), the levels defined initially, and a boolean representing whether
or not to keep the residuals that allow the user to rebuild the original file. The user then applies
these compression settings to the desired branch to compress.

1 std::vector <Int_t > levels = { 51, 43 };

2 ROOT:: PrecisionCascadeCompressionConfig targetConfig(

3 ROOT:: RCompressionSetting :: EAlgorithm ::kBLAST ,

4 levels ,

5 true /* Keep also the residual file */ );

6 ...

7 lossy_branch ->SetCompressionSettings(targetConfig);

6. Open Issues
From a technical standpoint, all pieces of BLAST and Precision Cascade are ready to deploy
to the community. A pending license would grant free unlimited permission for ROOT to use
and integrate the codes for non-profit/academic communities (i.e. redistribute sources as part of
ROOT releases). In the interim, binary library distributions are available for the early adopter.

7. Conclusion
Derived from the theory of ”Compressive Computing”, BLAST has demonstrated outperfor-
mance of ROOT compression, in terms of compression factor, in many cases. For certain anal-
yses, lossy compression retains enough precision for the data to still be useful.

One of the main concerns surrounding use of lossy compression has beenthe irretrievable
nature of the ”lost” bits, rendering data useless if later on, the user needs more precision.
Precision Cascade is a novel algorithm that solves this concern by allowing users to save ”lost”
bits in separate files, such that a user can retrieve higher precision data if necessary. With
Precision Cascade, we hope to build the community’s confidence in utilizing lossy compression



algorithms and minimize the friction in doing so. We are hoping to release the BLAST algorithm
suite in ROOT soon to the community, so please stay tuned!

8. Acknowledgments
This work was supported by the U.S. Department of Energy, SBIR/STRR Program of the
Office of science, Nuclear Physics under Award Number DE-SC0018521, as well as other
contracts/grants from NASA, the U.S. Department of Defense, and the U.S. Department of
Energy, and private support from Intellectual Property Systems, LLC and Accelogic, LLC.

References
[1] Lauret, Jérôme, Gonzalez, Juan, Van Buren, Gene, Nuñez, Rafael, Canal, Philippe, and Naumann, Axel,

“Extreme compression for large scale data store,” EPJ Web Conf., vol. 245, p. 06024, 2020.
[2] J. G. Gonzalez, S. A. Fonseca, and R. C. Nunez, “Arrangements for communicating data in a computing

system using multiple processors,” 5 2019.
[3] J. G. Gonzalez, S. A. Fonseca, and R. C. Nunez, “Arrangements for communicating data in a computing

system using multiple processors,” 3 2021.
[4] J. Lauret, J. Gonzalez, P. Canal, G. Buren, M. Burtscher, I. Cali, R. N. nez, and Y. Ying, “Root files improved

with extreme compression.” ACAT 2021, November 2021.
[5] P. Deutsch and J.-L. Gailly, “ZLIB Compressed Data Format Specification version 3.3.” RFC 1950

(Informational), May 1996.
[6] R. Brun and F. Rademakers, “Root — an object oriented data analysis framework,” Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 389, no. 1, pp. 81–86, 1997. New Computing Techniques in Physics Research V.


