
Adoption of the alpaka performance portability

library in the CMS software

Andrea Bocci1, Antonio Di Pilato1,2, Eric Cano1, Felice Pantaleo1,
Gabrielle Hugo1, Marco Rovere1, Matti Kortelainen3,
Shahzad Malik Muzaffar1, Vincenzo Innocente1, Wahid Redjeb1,4,
on behalf of the CMS collaboration
1CERN, European Organization for Nuclear Research, Meyrin, Switzerland
2CASUS, Center for Advanced Systems Understanding, Görlitz, Germany
3Fermilab, Fermi National Accelerator Laboratory, Batavia, IL, USA
4RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

E-mail: andrea.bocci@cern.ch

Abstract. To achieve better computational efficiency and exploit a wider range of computing
resources, the CMS software framework (CMSSW) has been extended to offload part of the
physics reconstruction to NVIDIA GPUs, while the support for AMD and Intel GPUs is under
development. To avoid the need to write, validate and maintain a separate implementation
of the reconstruction algorithms for each back-end, CMS decided to adopt a performance
portability framework. After evaluating different alternatives, it was decided to adopt Alpaka
as the solution for Run-3. Alpaka (Abstraction Library for Parallel Kernel Acceleration) is
a header-only C++ library that provides performance portability across different back-ends,
abstracting the underlying levels of parallelism. It supports serial and parallel execution on
CPUs, and extremely parallel execution on GPUs. This contribution will show how Alpaka is
used inside CMSSW to write a single code base; to use different tool-chains to build the code for
each supported back-end, and link them into a single application; and to select the best back-
end at runtime. It will highlight how the alpaka-based implementation achieves near-native
performance, and will conclude discussing the plans to support additional back-ends.

1. Introduction
A portion of the CMS High Level Trigger (HLT) reconstruction has been rewritten to run on
GPUs using the CUDA framework, enabling over 40% of the runtime to be offloaded to GPUs
during the 2022 data taking, as shown in Figure 1. The deployment of a GPU-equipped HLT
farm resulted in a 70% increase in event processing throughput, 50% better performance per
kilowatt, and 20% improved performance per cost[1]. This GPU-based reconstruction has been
validated offline on GPU-equipped nodes at CMS Tier-2s, deployed in production since the start
of LHC Run-3 data taking in 2022, and optimized throughout the year. Current efforts focus on
writing additional algorithms to leverage GPUs, including particle flow clustering, full primary
vertex reconstruction, electron seeding, and other related tasks.

To avoid duplicating the effort of writing, maintaining and validating the reconstruction
algorithms for each back-end, CMS explored various performance portability options[2, 3].
The exploration was based on the Standalone Patatrack Pixel Tracking application[4], that

CPU-only with GPUs

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

ECAL
HCAL
Pixel track and vertex
Full track and vertex
Particle Flow
Jets/MET
Taus
E/Gamma
Muons
other
non-event processing

av
er

ag
e

re
co

ns
tru

ct
io

n
tim

e
pe

r e
ve

nt

690 ms/ev

398 ms/ev

CMS Preliminary 13.6 TeV

porting to GPUs
under development

rewritten to run on
GPUs (and CPUs)

Figure 1. Average processing time per event for the CMS online reconstruction, measured on
a production HLT node equipped with two AMD EPYC 7763 Milan CPUs and two NVIDIA
Tesla T4 GPUs. The measurements were performed on proton-proton events collected in October
2022 with an average pileup of 56 collisions, using 8 concurrent jobs, each with 32 CPU threads,
and processing 24 concurrent events. The horizontal bands represent the time fractions spent
in different categories of reconstruction algorithms. The left stacked bar displays the average
processing time when using only CPUs, while the right stacked bar shows the time when utilizing
both CPUs and GPUs.

implements part of the CMS reconstruction algorithms in a stand-alone environment, easier
to port to different back-ends. The Alpaka library was ultimately selected due to its high
performance, very close to and sometimes surpassing that of native implementations, it support
for GPUs from different vendors and generations within a single application, and its ease of
integration into the CMS build system.

2. The Alpaka library
The Alpaka library[5, 6, 7, 8] is a C++17 header-only abstraction library designed to simplify
accelerator development and enhance performance portability across various accelerators. It
supports a wide range of devices, including CPUs and GPUs from NVIDIA and AMD, and
offers multiple accelerator back-end options like CUDA, HIP/ROCm, OpenMP, std::thread,
and serial execution. Support for Intel GPUs and FPGAs based on SYCL and oneAPI is
under development[9]. Alpaka enables developers to write a single kernel implementation using
function objects with a specific interface, eliminating the need for specialized CUDA, OpenMP,
or custom threading code. The library allows mixing accelerator back-ends within a device
queue, and runtime decision-making for kernel execution. The abstraction approach mirrors the
CUDA grid-blocks-threads strategy, requiring algorithms to be organised into kernels executing
on a multi-dimensional grid of uniform work items. Threads are organized in blocks, with
parallel execution within each block, efficient synchronisation primitives and fast shared memory
for interaction. Block execution order is unspecified and depends on the accelerator used,
allowing optimal adaptation to the available hardware. Integration in an existing project is
straightforward, using either CMake or Unix Makefiles.

0 4 8 12 16 20 24 28 32
0 ev/s

200 ev/s

400 ev/s

600 ev/s

800 ev/s

1000 ev/s

1200 ev/s

1400 ev/s

native CUDA

alpaka –cuda
(with async memory)

alpaka –cuda
(without async memory)

CPU cores

th
ro

ug
hp

ut
Patatrack Preliminary

Figure 2. Average processing time per event for the Alpaka-based Patatrack pixel track
reconstruction application running on an NVIDIA Tesla T4 GPU, plotted as a function of
the number of CPU threads used and concurrent events being processed. The downward yellow
triangles indicate the performance without using stream-ordered memory operations, while the
upward orange triangles indicate the performance after implementing stream-ordered memory
operations in Alpaka and using them in the application. For reference, the light green squares
indicate the performance of the native CUDA application.

3. Performance
The reconstruction code in CMS exhibits patterns that differ significantly from those typically
found in HPC code. The data analyzed consists of numerous independent events, with processing
times for each event ranging from milliseconds to seconds. To exploit multi-core CPUs and
GPUs, multiple events are processed simultaneously, necessitating the use of parallel “streams”
or queues. Event processing involves numerous medium-sized memory allocations, copies,
transfers, and the execution of dozens of distinct kernels. This results in an application that
rapidly cycles through host and device memory and launches thousands of kernels per second.

The data processing throughput of such an application can be substantially improved by
reducing the interaction with the accelerator runtime, employing a caching layer for the GPU-
related resources: device global memory, pinned host global memory used for faster data
transfers, CUDA streams and events used for synchronizing operations. As CMSSW has
been successfully using this approach with native CUDA, it was essential to provide a similar
functionality while using Alpaka. During the evaluation of the Alpaka library, CMS developers
integrated the more general functionalities into the library itself, while re-implementing the
CMS-specific features on top of Alpaka.

Figure 2 shows the impact of implementing stream-ordered memory operations in Alpaka.
These operations are natively available for the CUDA (version 11.2 or newer) and HIP/ROCm
(version 5.4 or newer) back-ends, and are emulated for the CPU back-end. Their introduction
removed the main bottleneck for the Standalone Patatrack Pixel Tracking application, leading
to a performance gain of 270% on an NVIDIA Tesla T4 GPU.

Figure 3 shows the impact of implementing a “caching allocator” on top of the Alpaka memory
operations. Caching and reusing the host and GPU memory buffers in the user code instead of
releasing and them to the back-end and reallocating them reduced the number of synchronisation
points in the application, improving the overall performance by 25%.

0 4 8 12 16 20 24 28 32
0 ev/s

200 ev/s

400 ev/s

600 ev/s

800 ev/s

1000 ev/s

1200 ev/s

1400 ev/s

native CUDA

alpaka –cuda
(with caching allocator)

alpaka –cuda
(without caching allocator)

CPU cores

th
ro

ug
hp

ut
Patatrack Preliminary

Figure 3. Average processing time per event for the Alpaka-based Patatrack pixel track
reconstruction application running on an NVIDIA Tesla T4 GPU, plotted as a function of
the number of CPU threads used and concurrent events being processed. The upward orange
triangles indicate the performance without using a caching memory allocator, while the red
diamonds indicate the performance after implementing a caching allocator for host and device
memory on top of Alpaka and using them in the application. For reference, the light green
squares indicate the performance of the native CUDA application.

0 4 8 12 16 20 24 28 32
0 ev/s

200 ev/s

400 ev/s

600 ev/s

800 ev/s

1000 ev/s

1200 ev/s

1400 ev/s

native CUDA

alpaka --cuda

CPU cores

th
ro

ug
hp

ut

Patatrack Preliminary

Figure 4. Average processing time per event for the Patatrack pixel track reconstruction
application running on an NVIDIA Tesla T4 GPU, plotted as a function of the number of CPU
threads used and concurrent events being processed. The red diamonds indicate the performance
of the Alpaka-based application, while the green squares indicate the performance of the native
CUDA application.

Finally, Figures 4 and 5 compare the performance of the native GPU application and its
native CPU port with that of the Alpaka version. Running on an NVIDIA Tesla T4 GPU, the

0 8 16 24 32 40 48 56 64 72
0 ev/s

200 ev/s

400 ev/s

600 ev/s

800 ev/s

1000 ev/s

1200 ev/s

1400 ev/s

1600 ev/s

1800 ev/s

serial, without SMT
(1 thread per core)
serial, with SMT
(2 threads per core)

alpaka --serial, without SMT
(1 thread per core)
alpaka --serial, with SMT
(2 threads per core)

CPU cores

th
ro

ug
hp

ut
Patatrack Preliminary

Figure 5. Average processing time per event for the Patatrack pixel track reconstruction
application running on an AMD EPYC Milan 7763 CPU with 64 cores, shown as a function of
the number of physical CPU cores used and concurrent events being processed. Dashed lines
indicate the performance using a single thread per physical core, while solid lines demonstrate the
impact of employing two threads per physical core with Simultaneous Multi-Threading (SMT)
enabled. The purple downward triangles and pink upward triangles indicate the performance of
the Alpaka-based application, whereas the blue squares and light blue diamonds represent the
performance of the native CPU implementation.

Alpaka version achieves a performance better than 95% of the native one. On an AMD EPYC
Milan 7763 CPU with 64 cores the performance of the Alpaka version is significantly better than
that of the native implementation.

4. Adoption in CMSSW
The build system of CMSSW was extended to integrate Alpaka and automatically build packages
for all the supported back-ends, using either the device specific compiler or simply linking to
the device runtime, and producing a distinct shared library per back-end. A new alpaka/

subdirectory was added under the existing ones such as interface/, src/, and plugins/. The
source files under these subdirectories are compiled multiple times, once per back-end, with the
active back-end identified by preprocessor macros. The files with the standard .cc extension
are compiled by the host compiler (e.g. g++), while those with the newly introduced .dev.cc

extension are compiled by the back-end specific device compiler (e.g. nvcc -x cu or hipcc).
Figure 6 shows the directory structure of two packages written using Alpaka. In the

example, the files under HeterogeneousCore/AlpakaTest/plugins/alpaka/ undergo multiple
compilations: once for the CPU back-end, once for the CUDA back-end, and once for the
HIP/ROCm back-end. The file TestAlgo.dev.cc is compiled for each back-end by a different
compiler: g++ for the CPU back-end, nvcc -x cu for the CUDA back-end, and hipcc for the
HIP/ROCm back-end. In contrast, the other .cc files are always compiled using g++.

Finally, all the compiled files are linked with the back-end specific runtime libraries, and built
into a separate shared library per back-end. This allows loading only the runtime libraries that
are actually used by the application: for example, running on a machine without GPUs does
not require loading any of the CUDA or ROCm libraries.

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ ├── TestSoA.h
│ └── alpaka/
│ └── TestDeviceCollection.h
└── src/
 ├── alpaka/
 │ ├── classes_cuda.h
 │ ├── classes_cuda_def.xml
 │ ├── classes_rocm.h
 │ └── classes_rocm_def.xml
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ ├── TestAlpakaAnalyzer.cc
│ └── alpaka/
│ ├── TestAlgo.dev.cc
│ ├── TestAlgo.h
│ ├── TestAlpakaProducer.cc
│ └── TestAlpakaTranscriber.cc
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

Figure 6. Directory structure for two CMSSW packages that use the Alpaka library. Source files
under an alpaka/ subdirectory are compiled multiple times, once per back-end, using either the
standard host compiler or a back-end specific compiler. .cc files use the former, while .dev.cc
files (in bold in the right box) use the latter.

5. Conclusions and future work
With the adoption of Alpaka as the performance portability solution for Run-3, CMS will be able
to use a single code base to leverage leading accelerator technologies, such as NVIDIA CUDA
and AMD ROCm, while automatically providing a CPU-only version. This approach paves the
way for enhancements along two orthogonal directions. Within CMS, various groups are porting
the existing CUDA algorithms to Alpaka, and developing new parallel algorithms directly using
Alpaka. At the same time, CMS developers are closely collaborating with the Alpaka group to
expand the back-ends that CMSSW can run on, and enhance the performance of the Alpaka
library itself.

Acknowledgements
The authors would like to acknowledge the assistance of OpenAI’s ChatGPT, which is based
on the GPT-3.5 and GPT-4 models[10], for editing and enhancing sections of this manuscript.
ChatGPT’s AI language generation capabilities provided valuable input in refining the text and
improving its clarity.

References
[1] Huwiler M 2023 these proceedings
[2] Kortelainen M J, Kwok M, (on behalf of the CMS Collaboration), Childers T, Strelchenko A and Wang Y

2021 EPJ Web Conf. 251 03034 URL https://doi.org/10.1051/epjconf/202125103034

[3] Bocci A, Czirkos A, Di Pilato A, Pantaleo F, Hugo G, Kortelainen M, Redjeb W and on
behalf of the CMS collaboration 2023 Journal of Physics: Conference Series 2438 012058 URL
https://dx.doi.org/10.1088/1742-6596/2438/1/012058

[4] Standalone patatrack pixel tracking URL https://github.com/cms-patatrack/pixeltrack-standalone/

[5] Alpaka: Abstraction library for parallel kernel acceleration URL https://github.com/alpaka-group/alpaka

[6] Worpitz B 2015 Investigating performance portability of a highly scalable particle-in-cell simulation
code on various multi-core architectures Master thesis Technische Universität Dresden URL
http://dx.doi.org/10.5281/zenodo.49768

[7] Zenker E, Worpitz B, Widera R, Huebl A, Juckeland G, Knüpfer A, Nagel W E and Bussmann M 2016
(IEEE Computer Society) (Preprint 1602.08477) URL http://arxiv.org/abs/1602.08477

[8] Matthes A, Widera R, Zenker E, Worpitz B, Huebl A and Bussmann M 2017 (Preprint 1706.10086) URL
https://arxiv.org/abs/1706.10086

[9] Stephan J, Bastrakov S, Di Pilato A, Ehrig S, Gruber B M, Vyskočil J, Widera R and Bussmann M 2023
these proceedings

[10] OpenAI 2023 Gpt-4 technical report (Preprint 2303.08774)

