
Portable Programming Model Exploration for

LArTPC Simulation in a Heterogeneous Computing

Environment: OpenMP vs. SYCL

Meifeng Lin1, Zhihua Dong1, Tianle Wang1, Mohammad Atif1,
Meghna Battacharya2, Kyle Knoepfel2, Charles Leggett3, Brett
Viren1, Haiwang Yu1

1 Brookhaven National Laboratory, Upton, NY 11973, USA
2 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. The evolution of the computing landscape has resulted in the proliferation of
diverse hardware architectures, with different flavors of GPUs and other compute accelerators
becoming more widely available. To facilitate the efficient use of these architectures in a
heterogeneous computing environment, several programming models are available to enable
portability and performance across different computing systems, such as Kokkos, SYCL,
OpenMP and others. As part of the High Energy Physics Center for Computational Excellence
(HEP-CCE) project, we investigate if and how these different programming models may be
suitable for experimental HEP workflows through a few representative use cases. One of such
use cases is the Liquid Argon Time Projection Chamber (LArTPC) simulation which is essential
for LArTPC detector design, validation and data analysis. Following up on our previous
investigations of using Kokkos to port LArTPC simulation in the Wire-Cell Toolkit (WCT)
to GPUs, we have explored OpenMP and SYCL as potential portable programming models for
WCT, with the goal to make diverse computing resources accessible to the LArTPC simulations.
In this work, we describe how we utilize relevant features of OpenMP and SYCL for the LArTPC
simulation module in WCT. We also show performance benchmark results on multi-core CPUs,
NVIDIA and AMD GPUs for both the OpenMP and the SYCL implementations. Comparisons
with different compilers will also be given where appropriate.

1. Introduction
Computing plays a central role in many aspects of experimental high energy physics (HEP),
including detector simulation, event reconstruction, and end-user data analysis. Traditionally,
experimental HEP software is written with homogeneous multi-core CPUs as the main targets.
With the expected orders-of-magnitude increase of data volume and data rate from the next-
generation high-energy particle experiments, purely relying on CPU computing resources may
not be sufficient to meet the demands of the processing needs. One such experiment is
the planned Long-Baseline Neutrino Facility (LBNF)/Deep Underground Neutrino Experiment
(DUNE), an international project to study the fundamental properties of neutrinos. Built on
the Liquid Argon Time Projection Chamber (LArTPC) technology, DUNE is expected to bring
30 PB per year of data from the far detector (FD) LArTPC modules alone [1]. This is at least
an order of magnitude more than that from the current and past neutrino experiments. A single



readout of one of the four FD modules is expected to provide about 5 GB of raw packed data at
a rate of about 0.1 Hz. In addition, roughly 500 TB of data is expected to arrive from the FD
each month on average due to observing activity consistent with that of a supernova neutrino
burst. Though the vast majority of these triggers will be due to background fluctuations, each
one must nonetheless be fully analyzed. Analyzing DUNE FD data promptly may require access
to and efficient utilization of modern high performance computing (HPC) systems, which often
have heterogeneous configurations with host multi-core CPUs plus compute accelerators such as
general-purpose Graphics Processing Units (GPUs). To efficiently utilize these HPC resources,
existing software will need to be refactored to allow certain computation-intensive parts of the
workload to run on GPUs. However, as HEP software needs to go through rigorous verification
and validation processes, we do not want to and should not rewrite the software for every new
hardware architecture that comes out. This is especially important now as there are at least
three different GPU vendors, AMD, Intel, and NVIDIA, who have different native application
programming interfaces (APIs) for their GPUs.

We are thus motivated to explore portable programming models that would allow us to
write the software against a single API while delivering decent performance over a variety of
CPU and GPU architectures. This is part of the strategy pursued by the High Energy Physics
Center for Computational Excellence (HEP-CCE) project, which investigates ways to get HEP
workflows to run efficiently on various HPC systems. A test use case that is particularly of
interest to DUNE is the LArTPC signal simulation, which models the electric current induced
in the LArTPC wires by ionization electrons that are produced by energetic charged particles
passing through the detector. In previous studies [2, 3], we have shown that Kokkos [4], a C++
abstraction layer that supports multiple architectures, can provide performance and portability
while maintaining the familiar C++ syntax and ease of use. Here we present our experiences in
porting the LArTPC signal simulation to two other portable programming models, SYCL [5] and
OpenMP [6]. We briefly describe LArTPC signal simulation in the Wire-Cell Toolkit (WCT)
in Section 2. A high-level description of Kokkos, SYCL, and OpenMP is given in Section 3.
The SYCL and OpenMP implementation details are presented in Section 4. In Section 5, we
document the performance benchmarks for Kokkos, SYCL, and OpenMP. And we summarize
our experiences in Section 6.

2. LArTPC Signal Simulation in the Wire-Cell Toolkit
The Wire-Cell Toolkit (WCT) [7] currently provides state-of-the-art LArTPC signal simulation
implementation. The LArTPC signal simulation involves three main steps, as described in more
detail in Ref. [2]:

(i) Rasterization: Individual ionization electron groups are binned into “patches” of varying
sizes, typically with dimensions of O(20× 20) elements. This is where most of the floating
point operations occur and can benefit greatly from parallelization, since operations over
different patches can be done in parallel.

(ii) Scatter-Add: These patches are stacked and summed over a larger grid that spans the
longitudinal time and transverse space of the union of the patches. The grid is typically an
array of O(10, 000× 10, 000) elements. This step requires the atomic add operation.

(iii) Convolution: The large grid is then convolved with the detector response with dimensions
O(100 × 100) to obtain the simulated signal. The main computation here is Fast Fourier
Transform (FFT).

To simplify the testing of different portable programming models, we developed a standalone
code, wire-cell-gen, for the LArTPC signal simulation based on WCT, and implemented
Kokkos, SYCL and OpenMP versions separately [8, 9, 10]. For each implementation, the above
three steps are all contained in the DepoTransform function.



3. Kokkos, SYCL, and OpenMP
Kokkos [4] is a C++ abstraction layer that provides architecture-agnostic APIs for portability. It
has gained popularity since its inception due to its support for multiple hardware architectures,
including multicore/many-core CPUs, NVIDIA GPUS, AMD GPUs, and Intel GPUs.

SYCL [11] is an open standard programming model developed by the Khronos Group, which
enables writing C++ applications that can run on heterogeneous systems, such as CPUs, GPUs,
and FPGAs etc. Developers can write single source code and build with supported compilers
for different backends targeting different hardware platforms. It is also possible to select target
at runtime if it is supported by the compiler.

OpenMP [6] is an API that include compiler directives and runtime library routines for
multithreading on CPUs and “target offloading” on heterogeneous architectures. With the
appropriate compilers, an OpenMP code can potentially run on CPUs, GPUs and FPGAs.

4. Implementation Details
4.1. Wrappers for Vendor-Optimized FFT and RNGs
Since wire-cell-gen uses FFT and random number generators (RNGs), which can be
computationally expensive, we want to be able to use the optimized libraries provided by the
hardware vendors. Currently, Kokkos, SYCL, and OpenMP do not provide a mechanism to use
these optimized libraries in a portable way. As such, similar to our Kokkos implementation [3],
we write our own wrappers to allow us to use vendor-optimized libraries for FFT and RNGs.
For FFT, we use cuFFT for NVIDIA GPUs and rocFFT for AMD GPUs. For the host CPU code,
we use non-parallel fftw as it is used in the original WCT code. For RNGs, we use cuRAND for
NVIDIA GPUs, rocRAND for AMD GPUs and use random123 [12, 13] for CPUs.

4.2. SYCL
In Ref. [3] we described our procedure and performance of porting the wire-cell-gen code to
Kokkos. Since we had already structured the data flow and parallel execution patterns to be
GPU-friendly in the Kokkos implementation, we started the SYCL implementation from the
Kokkos version. In many cases, the SYCL syntax is very similar to Kokkos, so porting from
Kokkos to SYCL is relatively straightforward.

We created Array1D and Array2D classes to replace KokkosArray class in the Kokkos
implementation (which is a wrapper for KokkosView). Those two classes have just simple
pointers and sizes with a few methods. Using them, many lines of Kokkos code can be easily
converted to SYCL with simple translations such as shown below.

Kokkos::deep_copy(sps_f, spf_h); -> sp_fs.copy_from(sps_h);

auto sp_ts = -> auto sp_ts =

KokkosArray::idft_cr(sp_fs,1) ; SyclArray::idft_cr(sp_fs,1) ;

4.3. OpenMP
For many CPU-based projects, porting using OpenMP means we can start by adding
#pragma omp for data movement and loop parallelization, and do not need to change the CPU
code significantly. However, the original WCT code is not structured well for this form of
parallelization and so we started from the Kokkos version. We used one-dimensional arrays to
represent all the data. We also manually performed data movement using #pragma omp target
data map to remove unnecessary data movement and lower peak memory usage.

One key difference between the Kokkos version and the OpenMP version is that, since Kokkos
supports GPU prefix sum operation (scan) while OpenMP currently does not, we modified the
algorithm for one of the kernels to remove the use of GPU scan operation. This change only
introduces negligible performance loss and relatively small extra memory usage.



5. Performance Evaluations
5.1. Hardware Platform and Software Environment
For consistency of performance benchmarks, we used the same workstation (lambda1) at
Brookhaven National Laboratory which has an NVIDIA V100 GPU, an AMD Raedon Pro
VII GPU, and an AMD 24-core Ryzen Threadripper 3960X CPU with 48 hyperthreads. This is
the same platform used for the performance evaluation of the Kokkos implementation [3].

The compiler support for both SYCL and OpenMP target offloading is still under constant
development. We tried a few SYCL compilers, including Intel LLVM compiler, OpenSYCL
(formerly hipSYCL) and Intel oneAPI compiler (dpcpp). None of them was able to successfully
build our code for all backends. But we were able to have at least one compiler that worked for
a particular target backend. The situation is better for OpenMP, as the LLVM Clang compiler
works well for all backends we tested. We also tried GCC and NVIDIA’s HPC SDK (nvc++) for
OpenMP target offloading. NVIDIA HPC SDK only works for NVIDIA GPUs. As for GCC, it
can compile and run various unit tests successfully with OpenMP target offloading. However we
encountered some runtime errors when trying to compile and run wire-cell-gen-openmp with
GCC. The compilers that can successfully build our code are summarized in Table 1.

Programming Model Compilers Version Target Architecture

SYCL
Intel/LLVM (clang++) nightly-20220425

NVIDIA GPU
AMD GPU

OpenSYCL v0.93 CPU
Intel oneAPI (dpcpp) 2022.02 CPU

OpenMP
LLVM/Clang 15

NVIDIA GPU
AMD GPU

CPU
NVIDIA HPC SDK (nvc++) 21.9 NVIDIA GPU

Table 1. SYCL and OpenMP compilers used for this study.

5.2. Performance Comparison
The SYCL and OpenMP implementations were validated against the Kokkos version for
correctness. To compare the performance of each of our implementations on different
architectures, we measured the wall-clock time of the key computational kernels, Rasterization,
Scatter-Add, and FFT, as well as the total DepoTransform time. The timing measurements were
averaged over 20 runs for each implementation/backend. Figures 1 to 4 show the timing results
for each backend, where for the SYCL CPU backend, the results are from the oneAPI compiler,
and for the OpenMP NVIDIA GPU backend, the results are from the LLVM/Clang compiler.
We also include the timing results for the Kokkos implementation [3] for comparison.

Figure 1 shows that on the same platform, total running times are comparable between
different programming models with less than 20% difference. However, we can see from
the decomposition that the performances of three programming models are very different for
the Scatter-Add kernel (Figure 3), which is based on the atomic operation. The Kokkos
implementation gives the best performance, while the OpenMP implementation is about 5-10
times slower than that. In addition, on the AMD GPU, the OpenMP implementation has a large
overhead with the first RNG call, resulting in the large timing difference for the Rasterization
kernel (Figure 2). For FFT (Figure 4), since different implementations all use the same optimized
FFT libraries, the performance difference is small.



 0

 2

 4

 6

 8

 10

 12

 14

NVIDIA AMD CPU

T
im
e

 [
s
]

Kokkos
SYCL

OpenMP

Total DepoTransform Runtime (averaged over 20 runs)

Figure 1. Comparison of total DepoTrans-
form run time.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

NVIDIA AMD CPU

T
im
e

 [
s
]

Kokkos
SYCL

OpenMP

Rasterization Runtime (averaged over 20 runs)

Figure 2. Comparison of time spent in the
Rasterization kernel.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

NVIDIA AMD CPU

T
im
e

 [
s
]

Kokkos
SYCL

OpenMP

Scatter-Add Runtime (averaged over 20 runs)

Figure 3. Comparison of time spent in the
Scatter-Add kernel.

 0

 2

 4

 6

 8

 10

 12

 14

NVIDIA AMD CPU

T
im
e

 [
s
]

Kokkos
SYCL

OpenMP

FFT Runtime (averaged over 20 runs)

Figure 4. Comparison of time spent in FFT.

5.3. Performance Tuning
To get the performance results shown above, we went through some performance tuning for
both the SYCL and OpenMP implementations. For example, in the OpenMP implementation,
the default choice of num_threads and num_teams sometimes do not offer the best performance.
Another example is that, in Rasterization, there are several kernels with 2-level nested loops
of a larger outer loop and a smaller inner loop. We find that for some kernels it is best to
parallelize both loops, while in some other cases, it is best to only parallelize the outer loop. For
the SYCL CPU backend, there are two ways to compile the program using dpcpp: Just-In-Time
(JIT) compilation, or Ahead-Of-Time (AOT) compilation. JIT compilation is the default when
the CPU target is not explicitly specified through the -fsycl -fsycl-targets=spir64 x86 64

-Xs flags. In the case of WCT, JIT adds 1 second to the timing of Rasterization compared to
AOT for the CPU backend. We only show the SYCL AOT results in Figures 1–4.

5.4. Compiler Comparison
Since we were able to compile the SYCL code for the CPU backend with two compilers,
OpenSYCL and Intel oneAPI, we show the timing of the Rasterization kernel as a function
of the number of CPU threads in Figure 5. OpenSYCL shows better scaling up to 16 threads,
after which oneAPI outperforms OpenSYCL. This may be due to the different runtime libraries
the compilers use, since OpenSYCL uses the OpenMP backend while oneAPI uses Intel TBB.

For the OpenMP implementation, we were able to use both the LLVM/Clang compiler and
the NVIDIA HPC SDK to compile the code for the NVIDIA V100 GPU. Both compilers give
similar overall performance, as shown in Figure 6.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 12 16 20 24 28 32 36 40 44 48

T
im
e

 [
s
]

Number of CPU Threads

OpenSYCL
Intel oneAPI

Rasterization Runtime vs. # of CPU Threads (averaged over 20 runs)

Figure 5. Comparison of the Rasterization
time on the CPU for the SYCL implementa-
tion with two different compilers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Total FFT Raster. ScatterAdd

T
im
e

 [
s
]

LLVM/Clang
NVIDIA HPCSDK

Runtime on NVIDIA V100 (averaged over 20 runs)

Figure 6. Comparison of the LLVM/Clang
compiler and the NVIDIA HPC SDK for the
OpenMP implementation.

6. Summary and Outlook
We successfully implemented the LArTPC signal simulation in the Wire-Cell Toolkit with three
portable programming models: Kokkos, SYCL and OpenMP. We have shown that all three
programming models can produce comparable computational performance with the simulation
parameters we tested. They all allow us to write a single code to target different computing
architectures. We are in the process of investigating the stdpar model [14] for WCT, and will
report the detailed comparisons of these different programming models in a future publication.

Acknowledgments
This work was supported by the U.S. Department of Energy, Office of Science, Office of High
Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE) under
B&R KA2401045. This research used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231. We gratefully acknowledge the support of the Wire-Cell team of the Electronic
Detector Group in the Physics department and the Scientific Data and Computing Center of
Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under
Contract No. DE-SC0012704.

References
[1] Abed Abud A et al. (DUNE) 2022 (Preprint 2210.15665)
[2] Yu H, Dong Z, Knoepfel K, Lin M, Viren B and Yu K 2021 EPJ Web of Conferences vol 251 (EDP Sciences)

p 03032
[3] Dong Z, Knoepfel K, Lin M, Viren B and Yu H 2023 Journal of Physics: Conference Series vol 2438 (IOP

Publishing) p 012036
[4] Edwards H C, Trott C R and Sunderland D 2014 Journal of parallel and distributed computing 74 3202–3216
[5] Reyes R and Lomüller V 2016 Parallel Computing: On the Road to Exascale (IOS Press) pp 673–682
[6] Openmp openmp.org

[7] Wire-cell toolkit https://github.com/WireCell/wire-cell-toolkit
[8] Wire-cell signal simulation kokkos implementation https://github.com/WireCell/wire-cell-gen-kokkos

[9] Wire-cell signal simulation sycl implementation https://github.com/WireCell/wire-cell-gen-sycl

[10] Wire-cell signal simulation openmp implementation https://github.com/WireCell/wire-cell-gen-openmp

[11] Sycl https://www.khronos.org/sycl/
[12] Random123 https://github.com/DEShawResearch/random123

[13] Salmon J K, Moraes M A, Dror R O and Shaw D E 2011 Proceedings of 2011 international conference for
high performance computing, networking, storage and analysis pp 1–12

[14] stdpar https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/


