
Application of Portable Parallelization Strategies

for GPUs on track reconstruction kernels

Martin Kwok, Matti Kortelainen, Giuseppe Cerati, Alexei
Strelchenko, Oliver Gutsche

Fermi National Accelerator Laboratory, Batavia, IL, USA

E-mail: kkwok@fnal.gov

Abstract. Utilizing the computational power of GPUs is one of the key ingredients to meet
the computing challenges presented to the next generation of High-Energy Physics (HEP)
experiments. Unlike CPUs, developing software for GPUs often involves using architecture-
specific programming languages promoted by the GPU vendors and hence limits the platform
that the code can run on. Various portability solutions have been developed to achieve
portable, performant software across different GPU vendors. Given the rapid evolution of
these portability solutions, an early adoption of them in simple HEP testbed applications
will help us understand the strengths and weaknesses of respective approaches.

We apply several portability solutions, including Alpaka, Kokkos, SYCL and
std::execution::par, on kernels for track propagation extracted from the mkFit project. We
report on the development experience of the same application with different portability
solutions, as well as their performance on GPUs, measured as the throughput of the kernels,
from different manufacturers such as NVIDIA, AMD and Intel.

1. Introduction
Heterogeneous computing is one of the key components to meet the computing challenge of
next generation of HEP experiments. Taking HL-LHC upgrade as an example, which aims at
collecting 10 times more data than the LHC has collected in approximately the same number
of operating years. The required total CPU hours to support the ambitious science goal of
HL-LHC is projected to exceed the amount that can be obtained with a flat budget increase
of 10-20% [1]. Given the discrepancy, the usage of compute accelerators, such as GPUs, could
provide the additional computing power to meet the resource demand.

However, it is far from a trivial task for the HEP community to adopt the use of compute
accelerators, with millions line of code already written for x86 CPU architecture. Converting
domain-specific CPU algorithms into efficient kernels that can take advantage of the massive
parallelism in GPU is a task that requires significant development resources. Typical HEP
experiments require hundreds of such kernels with no dominant hot-spots, each may use
custom data objects, and need to be developed and maintained by domain experts and
executed on hundreds of different computing sites.

Given the above constrains, it is necessary for the adoption of compute accelerators in
HEP to be portable across multiple accelerator platforms with minimal code changes while
maintaining good performance. Achieving performance portability will avoid duplication of
development efforts, maintenance of multiple code base, and gain access to more computing
resources that uses different accelerators. In fact, the recently deployed and planned exa-scale
HPC systems around the world, summarized in Table. 1, have a diverse set of CPU/GPU



architectures and vendor providers. The proliferation of architecture choices of HPC systems
is likely to continue in their pursue for best computing performance. These exa-scale systems
could provide the additional computational resources for meeting future computing challenges,
if the HEP software could make use of them.

HPC system Location CPU GPU Peak Flop/s Year
Perlmutter, NERSC U.S. AMD(x86) Nvidia 94 PFlop/s 2020

Aurora, ANL U.S. Intel(x86) Intel > 1 ExaFlop/s 2023
Frontier, ORNL U.S. AMD(x86) AMD 1.69 ExaFlop/s 2021

El Capitan, LLNL U.S. AMD(x86) AMD 1.5 ExaFlop/s 2023
Leonardo, Cineca Italy Intel(x86) Nvidia 256 PFlop/s 2021

LUMI, CSC Finland AMD(x86) AMD 429 PFlop/s 2021
Alps, CSCS Switzerland Nvidia(arm) Nvidia 4.7 PFlop/s 2020

Table 1. Example list of recently deployed/planned major HPC systems and the CPU/GPU
vendor selected. Peak flop taken from the TOP500 November 2022 list if available.

There has been active efforts, coming from both industry and academia, to develop portable
parallelization solutions, which are summarized in Figure. 1. Many of the solutions are rapidly
changing in timescales of a month, for new features, better compiler supports or new back-
ends. Several different approaches are being attempted among these solutions, including
using compiler pragmas (OpenMP/OpenACC), C++ libraries (Alpaka [2], Kokkos [3, 4])
and language extension (SYCL, std::par). Each approach inherits certain advantages and
disadvantages, which may have very different implications if a HEP experiment wants to adopt
it. In this work, we will examine the performance of Kokkos, SYCL, Alpaka and std::par on
different GPU backends, using an example test-bed application in the HEP context.

Figure 1. Summary of hardware supports for different portability solutions, as of Oct 2022.
Green indicates officially supported, red indicates un-supported, while light-green indicates
under-development.

2. The propagation-to-r (p2r) program
Reconstruction of tracks of charged particles is one of the most computational intensive task
in collider experiments such as ATLAS and CMS at the LHC, which makes it the prime
targets for parallelization investigations. We developed a standalone mini-application, called
propagation-to-r (p2r) [5], which performs the core math of parallelized track reconstructions.
The kernel aims at building charged particle tracks in the radial direction under a magnetic
field from detector hits, which involves propagating the track states and performing Kalman



updates after the propagation. The kernels are implemented based on a more realistic
application, called mkFit [6], which performs vectorized CPU track fitting. Together with an
analogous project, propagation-to-z (p2z)[7], the two programs form the backbone of track
fitting kernels.

The p2r program uses a simplified program workflow, which processes a fixed number of
events (nevts) with the same number of tracks in each events (ntrks). A fixed set of input
track parameters is smeared randomly and then used for every tracks. All track computations
are implemented in a single GPU kernel. The input data are structured as an array-of-
structure-of-array (AOSOA). The total number of tracks to process equals to ntrks× nevts,
in which the tracks in each event are grouped into batches of size bsize. The structure of
array (SOA) structure that contains a batch of tracks is called MPTRK. Figure 2 shows the
data structure used in the p2r program.

Figure 2. Illustration of the data structure used in the p2r program.

3. Overview of the explored portable programming models
In this section, we give a brief overview for each of the portable programming models tested
in this work.

3.1. Alpaka
Alpaka [2] is a single-source, header-only C++ parallelization library. Initially, it started out
as a thin abstraction layer over CUDA, and continues to have similar API structures to CUDA.
The general approach is to construct an abstraction layer on top of CUDA concepts, such
as work division, memory operations, to provide portability. In particular, compute kernels
are templated with an accelerator object class, which provides easy switching of accelerator
back-ends at compile time.

3.2. Kokkos
Similar to Alpaka, Kokkos [4, 3] is also a single source C++ template library. One major
difference with Alpaka is that Kokkos aims to be more descriptive on the parallelism, rather
than prescriptive. With a more descriptive model, developers are asked to express the
algorithm in general parallel programming concepts, which are then mapped to hardware by
the Kokkos framework. Therefore, users do not explicitly map the loop iterations to threads,
which allows more flexible support for hardware that is not a close match of GPU-centric
programming model. Kokkos also provides a data structure for multidimensional arrays,
Kokkos::View, to handle efficient data layout for both GPU and CPU.



3.3. SYCL
SYCL [8] is a specification for single-source C++ programming model for heterogeneous
computing, for which different compilers or libraries can make concrete implementations. One
major compiler that supports SYCL is DPC++ [9], which is developed by Intel to support
Intel’s accelerator hardware, including GPUs and FPGAs. OpenSYCL(former hipSYCL) is
another recent, open-sourced effort to support NVIDIA, AMD and Intel GPUs via SYCL. In
general, SYCL compilers are under more active developments. Both Alpaka and Kokkos are
developing SYCL backends to support Intel hardware.

3.4. std::par
The C++ ISO standard also plans to extend the existing support to parallelization algorithms.
The basic functionalities such as std::execution and std::for each has been supported
since C++17 [10], with more supporting features for concurrency, such as std::atomic<T>
and std::atomic ref<T>, integrated in C++20 [11]. Some of the limitations with the std

includes the lack of explicit device memory management (i.e. only support unified shared
memory), async operations and the lack of support for user-defined kernel launch parameters.
Although compiler supports are still in early development, NVIDIA is supporting std::par

algorithms via a closed-source compiler(nvc++) while Intel’s GPU can be supported by using
oneAPI libraries.

4. Porting experience
In this section, we summarize the porting experience of p2r with different portability
technologies. Our reference implementation is vectorized on CPU, and parallelized with Intel
Threading Building Blocks (oneTBB). We first completed the implementation of a CUDA
version, from which we determined the operating parameters via profiling. Then we converted
the CUDA version of p2r to different portability solutions. For most solutions, this step
involved changing the corresponding API for data handling and kernel launching, while the
core kernel code largely remained the same. A considerable amount of time was also spent on
configuration of the software stack for compilation and build options, which was often longer
for AMD and Intel GPU backends and could sometimes require support from the developers
of the portability layer. Table 2 shows different versions of compilers used in this work. Last
but not least, we note that the majority portion of development time was spent on profiling
to understand if a specific implementation is converted optimally.

A more detailed comparison on the advantages/disadvantages of each portability solutions
can be found in here [12].

CUDA HIP
Alpaka
(v0.9.0)

Kokkos
(3.6.1)

SYCL std::par

NVIDIA GPU cuda/11.6.2 N/A
cuda/11.6.2
gcc/9.2.0

nvcc

cuda/11.6.2
gcc/8.2.0

nvcc

cuda/11.6.2
intel/llvm-sycl

nvc++/22.7

AMD GPU N/A rocm/5.2.0
rocm/5.1.3
gcc/9.2.0
hipcc

rocm/5.1.3
gcc/9.2.0
hipcc

rocm/5.1.3
intel/llvm-sycl

N/A

Table 2. Summary of compiler versions used for different GPU backends in this work. The
llvm-sycl branch is compiled with the commit [13]. We note that HIP could be compiled
for NVIDIA GPUs as well and that oneAPI toolkit recently included a plugin that enables
std::par to be used on AMD GPUs, however, both cases are not tested in this work.



5. Measurement and results
Measurements were performed on the computing nodes with a NVIDIA A-100 GPU and AMD
MI-100 GPU in the Joint Laboratory for System Evaluation (JLSE) hosted at the Argonne
National Laboratory. Table 3 summarizes some key performance specifications of the two
GPUs.

Vendor Model Peak FP64 flops Peak Memory bandwidth N cores
AMD MI-100 11.5 T flops 1.2 TB/s 7680
NVidia A-100 9.7 T flops 1.9 TB/s 6912

Table 3. Comparison of key performances specifications for GPUs used in the measurements.

Different implementations of the p2r program were compiled to execute on the two GPUs,
using the same operation parameters. Each kernel corresponds to the computation of 4 million
tracks. The metric for comparison is the overall track processing throughput of the kernel,
which is defined as the number of processed tracks divided by the duration of the kernel. Time
required for data transfer between the host and device is excluded. Before each measurement,
two warm-up runs are executed to reach a more stable hardware condition for computation.
The average of 10 measurements, and the corresponding standard deviations, is reported in
Figure 3 for each technology. The throughput obtained from portability technologies are
compared as a fraction of the throughput reached by the platform-native implementation.

On both A100 and MI-100 GPUs, Alpaka and Kokkos achieved much better performance
than SYCL and std::par. In particular for the A100 GPU, Alpaka and Kokkos’s performance
is very close to the native CUDA version, whereas SYCL and std::par are approximately
factor of 10 and 2 slower, respectively. We note, however, that both Alpaka and Kokkos suffer
from a ∼ 40% slow down if the kernel launch parameters, such as number of threads per
block and number of blocks per grid, are left to be determined by the automatic heuristic of
the portability layer. Results shown in Figure 3 are obtained by explicitly choosing the same
launch parameters and register per thread values as in the native CUDA version.

On MI-100, Alpaka version achieved 23% higher throughput than the native HIP
implementation. While it is possible that the portability layer could introduce better
optimization than the native implementation, further profiling work is required to confirm
the cause for the better performance observed in this case.

The poor performance of the SYCL implementation on both tested GPUs is not fully
understood. Initial profiling results show orders of magnitude more instructions were executed
in the kernel, inducing much more memory traffic and hence latency. Beyond understanding
the results on GPU, we plan on performing further studies with CPU multi-core backends
of these portability technologies, as we envisioned that an efficient CPU backend remains
critically important for most HEP applications in the near future.

6. Conclusion
In summary, we implemented a track propagation application with four different portability
technologies, Alpaka, Kokkos, SYCL, and std::par, and measured their performance on data
center-grade NVIDIA and AMD GPUs. This is an early investigation of implementing HEP-
specific algorithms using the latest portability technologies, which could play an important
role for GPU usage for HEP experiment in the near future. Together with other test-bed
applications investigated by the HEP-CCE, we hope this can inform the HEP community on
the advantages and potential issues on the relevant portability technologies.

Acknowledgments
This work was supported by the U.S. Department of Energy, Office of Science, Office of
High Energy Physics, High Energy Physics Center for Computational Excellence (HEP-



CUDA Alpaka Kokkos SYCL std::par(nvc++)
Portability Technologies

107

108

109

1010

Th
ro

ug
hp

ut
 (t

ra
ck

s/
s)

100.0 % 87.73 % 100.3 %

9.56 %

44.1 %

Tested on A100
CUDA-11.6,bsize=32

HIP Alpaka:HIP Kokkos:HIP SYCL:HIP
Portability Technologies

107

108

109

1010

Th
ro

ug
hp

ut
 (t

ra
ck

s/
s)

100.0 % 123.72 %

45.84 %

3.33 %

Tested on AMD MI-100
ROCm-5.2.0,bsize=32

Figure 3. Overall kernel throughput for different portability technologies on measured on a
NVIDIA A-100 GPU(left) and a AMD MI-100 GPU(right) on JLSE. The average result of 10
measurements is reported as the nominal values, and the corresponding standard deviations
is used as uncertainties, which is typically 2 orders of magnitude smaller than the average
value.

CCE) at Fermi National Accelerator Laboratory under B&R KA2401045. This work was
also supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research and Office of High Energy Physics, Scientific Discovery through
Advanced Computing (SciDAC) program.

We gratefully acknowledge the computing resources provided and operated by the Joint
Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

References
[1] CMS collaboration 2022 CMS Phase-2 Computing Model: Update Document Tech. rep. CERN Geneva

URL https://cds.cern.ch/record/2815292

[2] Matthes A, Widera R, Zenker E, Worpitz B, Huebl A and Bussmann M 2017 (Preprint 1706.10086) URL
https://arxiv.org/abs/1706.10086

[3] Trott C R, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, Gayatri R, Harvey E, Hollman
D S, Ibanez D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A, Rajamanickam S, Simberg M,
Sunderland D, Turcksin B and Wilke J 2022 IEEE Transactions on Parallel and Distributed Systems
33 805–817

[4] Edwards H C, Trott C R and Sunderland D 2014 Journal of Parallel and Distributed Computing 74 3202
– 3216 ISSN 0743-7315 domain-Specific Languages and High-Level Frameworks for High-Performance
Computing URL http://www.sciencedirect.com/science/article/pii/S0743731514001257

[5] The p2r program https://github.com/cerati/p2r-tests

[6] Lantz S, McDermott K, Reid M, Riley D, Wittich P, Berkman S, Cerati G, Kortelainen M, Hall A R,
Elmer P, Wang B, Giannini L, Krutelyov V, Masciovecchio M, Tadel M, Würthwein F, Yagil A, Gravelle
B and Norris B 2020 Journal of Instrumentation 15 P09030–P09030 URL https://doi.org/10.1088/

1748-0221/15/09/P09030

[7] The p2z program https://github.com/cerati/p2z-tests

[8] The Khoronos SYCL Working Group 2021 SYCL 2020 Specification (revision 2)
[9] The dpc++ compiler https://www.intel.com/content/www/us/en/developer/tools/oneapi/

dpc-compiler.html

[10] ISO. 2017. ISO/IEC 14882:2017: Programming languages — C++.
[11] ISO. 2020. ISO/IEC 14882:2020: Programming languages — C++
[12] Evaluating portable parallelization strategies for heterogeneous architectures https://indi.to/k7Bsk
[13] Intel llvm/sycl branch https://github.com/intel/llvm/tree/70c2dc6dcf73f645248aa7c70c8cefdabf37e9b7

https://cds.cern.ch/record/2815292
1706.10086
https://arxiv.org/abs/1706.10086
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://github.com/cerati/p2r-tests
https://doi.org/10.1088/1748-0221/15/09/P09030
https://doi.org/10.1088/1748-0221/15/09/P09030
https://github.com/cerati/p2z-tests
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://indi.to/k7Bsk
https://github.com/intel/llvm/tree/70c2dc6dcf73f645248aa7c70c8cefdabf37e9b7

