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Abstract. To handle increased data flow, Jefferson Lab (JLab) is partnering with ESnet for
development of an AI/ML directed compute work Load Balancer (LB) of UDP streamed data.
The LB is FPGA based featuring dynamically configurable, low latency and high throughput
destination address switching. The LB provides integration of edge and core computing to
support JLab experimental programs, the Electron-Ion Collider, as well as data centers of the
future.

In the ESnet/JLab FPGA Accelerated Transport (EJFAT) initiative, the function of the LB
Data Plane (DP) is to redirect data streams to selectable (but unknown to sender) destination
hosts based on current worload and within that host to destination ports as a function of sub-
stream id. This effects hierarchical scaling, first across compute machines for processing over a
series of events and second, across ports so different data source sub-streams may be assigned
to different processors for further parallelization.

The LB Control Plane (CP) programs the DP using compute farm telemetry to direct and
balance workloads across a compute cluster as the operating conditions require.

While Proportional/Integrative/Derivative (PID) controllers are often seen in similar
applications, here we investigate the feasibility of a Reinforcement Learning (RL) based schedule
manager running in the CP to provide dynamic updates to the DP scheduling policy.

1. Introduction

A detailed description of EJFAT FPGA based LB operations is available in Reference [1]. As
described in Reference [1], the EJFAT LB consists of two suites; (1) A DP consisting of an
FPGA programmed with Register Transfer Logic (RTL) for network device support, and P4 [13]
for packet processing and (2) a CP which monitors feedback from destination cluster compute
nodes, and dynamically programs the FPGA based DP for the data event to destination node
mappings in order to load balance computational work across a cluster of compute nodes.

The central problem of the LB CP is to reconfigure in a sufficiently timely manner the number
of data events individually disbursed to cluster nodes over the course of completing one iteration
cycle through a fixed number of round-robin slots where each slot is mapped to some node in the
cluster, in order to balance work in the cluster and maximize the timeliness of the availability
of cluster computed results. The round-robin slots are refereed to as the LB calendar, and one
cycle through the calendar is one LB iteration.

The Q-Learning (QL) type of RL was chosen due to it’s straightforward learning strategy.
The QL engine learns on every iteration and uses the Q matrix as the predictive element; in



this formulation it also functions as a learning momentum term and smoothing filter. For an
accessible reference on RL/QL, see Reference [2]. The Q value for each cluster node is adjusted
each iteration to affect learning according to the standard QL prescription:

Q[t + 1,node] = Q[t, node] + a x (R[t,node] + v x maz(E{R[node]}) — Q[t,node]) (1)

Where « is the learning rate constant, v is the discount rate constant, R is the rewards vector?
from the cluster nodes sent periodically to the QL engine in the CP, and maz(E{R}) is the
maximum expected future reward which in this analysis is the vector 1.

2. QL training simulation for Reinforcement Learning Based Load Balancing
Data event Reassembly Engines (RE) running in cluster nodes send the following reward
(feedback) values to the EJFAT CP:

Reward = %RE input FIFO empty (2)

This value is on the interval [0,1] where the value 1 indicates that the RE FIFO is empty or at
0% capacity, whereas a value of 0 indicates that the RE FIFO is full or at 100% capacity. This
value is typical of what might be sent to a PID controller running in the CP. For an accessible
reference on PID, see Reference [3].

In practice, EJFAT CP control policy is to schedule cluster nodes in it’s data event delivery
disbursement strategy to maintain all nodes at a desired value of Reward = 1, or 0% FIFO
occupancy signifying that nodes are experiencing minimum FIFO backlogs.

The EJFAT CP control input to the cluster nodes is effected by adjusting the fraction of
schedule slots that each node occupies in the DP round-robin schedule which determines the
rate in terms of data events per cycle for new work disbursed to each node. The schedule slot
occupancy fractions for all nodes is referred to as the Scheduling Density (SD) for the cluster.

Each node in the cluster is specified as having a mean event processing rate (EPR) which
is the number of data events it can process per cycle, and a FIFO size in terms of data events
awaiting processing.

A simulation intended to demonstrate the training and performance of a QL engine running
in the CP acting as the QL agent to select scheduling actions was constructed. Two simulations
were studied; the first for a compute cluster of five nodes with symmetric properties in terms of
FIFO capacities and EPRs, and the second with asymmetric properties as listed in Table (1).

Each iteration of the simulation is the effect of one full round-robin (or cycle through the LB
calendar) disbursement of data events to the cluster of total batch size (Bs) for processing equal
to the total EPR of the cluster (EPR-Table (1)) as

Bs = Z EPRInode] — src (3)
nodes

where src is a small margin of spare event processing rate capacity (SR) reserved to handle
process noise (PN) in the system. It was experimentally determined that one unit of SR was
adequate for this experiment.

! By wector we mean the collection of similar values over all cluster nodes.



Process noise is modeled as a discrete probability mass function (PMF) over deviations in the
number of data events dequeued from the RE FIFOs each iteration based on each node’s stated
EPR in Table (1). A PMF vector of

PMF = [4%,10%, 34%, 4%, 34%, 10%, 4%] (4)
for the deviations in event counts
[-3,-2,-1,0,1,2,3] (5)
was sampled for process noise on each iteration for every node.

3. Discussion of Results

For statistics, results from 10,000 iterations was used; for display purposes, only the first 100
iterations is shown for clarity. In all figures, the following color scheme was used: black for node
1, blue for node 2, green for node 3, orange for node 4, magenta for node 5. Table (1) gives the
expected asymptotic SD for each node based on their fractional EPR per cycle (FEPR). In the
figures below, the left column is the symmetric case, and the right column the asymmetric case.
Figure (1) shows the progression of Schedule Densities for all nodes starting from a uniform
distribution over all nodes for both simulations for the first few iterations for clarity and Figure
(2) shows their asymptotic behavior.

SD is calculated from Q as?

SD; =Q; + > Qi[node] (6)

nodes

Each data line from lowest SD to highest follows in the same order implied by the values, which
are the red lines in the figures, in the FEPR-Table (1) data line in the asymmetric simulation,
whereas all lines are noisy about the common FEPR value in the symmetric case. Statistics for
these values are shown in Table (2), which indicates that in both cases that SD is close to the
expected EPR values. We note here the divergence of the measured SD in the asymmetric case
from the theoretical values in Table (1) that however still resulted in the expected values for
disbursement counts (Db-Table (2)) compared to EPR.

SD is used to determined the number of events distributed to each node each iteration s.t.
Db; = Bs x SD; (7)

where the actuals are shown in Figure (3) and the statistics for which are given as Db-Table
(2) which should be compared to the values listed as EPR-Table (1). Here we observe that the
difference between Db and EPR, determine the allocation of spare rate capacity by the dynamics
of the scheduling decision and is given as SR-Table (2) and shows in the symmetric case the
highly desirable pattern of uniformity across nodes allowing each node equal opportunity to
work off any FIFO backlogs that might form due to process noise. This issue appears to be the
key success factor in inhibiting FIFO growth and is explained below. The resulting allocation in
the asymmetric case is graduated across nodes and scales roughly as the nodes EPR for reasons
that are currently not understood.

2 The matrix notation like X; means the i*" row in the matrix corresponding to that iteration in the simulation,
i.e., it is a vector.



Disbursement pattern (Db) together with EPR and PN the process noise matrix, combine
to determine RE FIFO size (the matrix F's) s.t.

Fsi-i-l = FSZ' + Dbi — (EPRl + PNZ) (8)

each cycle and which is depicted in Figure (4) and the statistics for which are given as Fs-Table
(2) which should be compared to the FIFO capacities for each node in Table (1). It should be
noted that Equation (8) implies a random walk structure for FIFO size processes indicating that
deployed systems must have some reserve processing capacity to remove data events from the
FIFOs that have temporarily increased since a random walk unchecked will tend to excurse to
ever increasing bounds proportional to v/ as the system progresses through increasing iterations.

For FIFO behavior we note that in both cases FIFOs are uniformly near zero as the distribution
of SR across nodes as indicated by Table (2) inhibits FIFO occupancy growth. In both cases,
FIFO occupancies fluctuate rapidly due to process noise where the SR allocation necessarily lags,
and in some cases temporary increases in FIFO levels persist for some number of subsequent
cycles. Linear trend lines fitted to these FIFO processes show slopes on the order of 107> with
mixed algebraic signs.

Quantization Error/Spare Capacity Table (2) shows the allocation of spare capacity by the
scheduler where in general it has no foreknowledge as to its proper placement. Since SD values
which are real numbers must be transformed into integer counts to populate the integral number
of LB schedule slots, any assignment inaccuracy or bias, particularly due to quantization errors,
together with process noise is prone to lead to over allocation of events above a nodes processing
capacity and lead to permanent or long term elevations in FIFO counts. A good example of this
phenomena is seen in Figure (5) where a hypothetical small over-allocation of events in certain
cycles (e.g., cycle 15) causes the FIFO level to increase to higher levels which persist until an
under-allocation cycle occurs (e.g., cycle 30) where the red line is EPR, the circled black line is
Db and the stair-stepped black is Fs.

Table 1. Simulation Parameters - Symmetric/Asymmetric.
N1 N2 N3 N4 N5 Nl N2 N3 N4 Nb

EPR 10 10 10 10 10 EPR 8 9 10 11 12
FEPR 0.2 02 02 02 02 FEPR 0.16 0.18 020 0.22 0.24
FIFO 30 30 30 30 30 FIFO 24 27 30 33 36




Table 2. Simulation Results - Symmetric/Asymmetric.
Nodel Node2 Node3 Node4 Nodeb

Mean-SD 0.2 0.2 0.2 0.2 0.2
StdDev-SD  0.0017 0.0017 0.0017 0.0017 0.0016
Mean-Db 9.8 9.8 9.8 9.8 9.8
StdDev-Db  0.49 0.49 0.48 0.49 0.49
Mean-Fs 3.0 2.86 3.1 3.1 3.2
StdDev-Fs  3.02 2.77 3.05 3.03 3.16
SR 0.2 0.2 0.2 0.2 0.2

Nodel Node2 Node3 Node4d Nodeb

Mean-SD 0.19 0.19 0.19 0.21 0.22
StdDev-SD  0.003  0.002  0.003 0.003 0.002
Mean-Db 7.8 8.8 9.8 10.8 11.7
StdDev-Db  1.76 1.68 0.82 0.42 0.45
Mean-Fs 3.0 2.9 3.5 3.0 2.6
StdDev-Fs  2.38 2.47 3.48 3.21 2.96
SR 0.16 0.17 0.18 0.22 0.27
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4. Conclusions

Q Learning in this study appears do an adequate job of maintaining an acceptable though
non-optimal schedule in both symmetric and asymmetric cases. Notable is allocation of spare
rate capacity to keep the cluster balanced and free from excessive FIFO backlogs.
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