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Abstract. PHASM (“Parallel Hardware viA Surrogate Models”) is a software toolkit currently
under development for creating Al-based surrogate models of scientific code. Al-based surrogate
models are widely used for creating fast and inverse simulations. The project anticipates an
additional future use case: adapting legacy code to modern hardware. Data centers are investing
in heterogeneous hardware such as GPUs and FPGAs. Meanwhile, many important codebases
are unable to take advantage of this hardware’s superior parallelism without undergoing a costly
rewrite. An alternative is to train a neural net surrogate model to mimic the computationally
intensive functions in the code, and deploy the surrogate on the exotic hardware instead.
PHASM addresses three specific challenges: (1) systematically discovering which functions can
be effectively replaced with a surrogate, (2) automatically identifying, for a given function, the
true space of inputs and outputs including those not apparent from the type signature, and (3)
integrating a machine learning model into a legacy codebase cleanly and with a high level of
abstraction. In the first year of development, a proof of concept has been developed for each
challenge. A surrogate API makes it easy to bring PyTorch models into the C++ ecosystem
and use profunctor optics to establish a two-way data binding between C++ datatypes and
tensors. A model variable discovery tool performs a dynamic binary analysis using Intel PIN in
order to identify a target function’s model variable space, including types, shapes, and ranges,
and generate the optics code necessary to bind the model to the function. Future work may
include exploring the limits of surrogate models for functions of increasing size and complexity,
and adaptively generating synthetic training data based on uncertainty estimates.

1. Background

A neural net trained to mimic an existing numerical algorithm is fundamentally just another
numerical algorithm. However, this class of algorithms has advantageous properties. Firstly, it
might have different time and space complexity, which prove immediately useful for fast and
inverse simulations. Secondly, in contrast to other modelling techniques, neural nets can act as
universal function approximators while sidestepping the curse of dimensionality [1]. This makes
surrogate models feasible for functions with much higher-dimensional input and output spaces.
Thirdly, a neural net surrogate model might have a much higher level of internal parallelism
compared to the original algorithm [2]. This permits them to run efficiently on heterogeneous
hardware such as GPUs, TPUs, or FPGAs. Once designed and trained, it is straightforward
to deploy a model on different hardware types. Modern data centers are investing heavily in
heterogeneous hardware, but many important codebases are unable to take advantage of this
hardware without undergoing a costly rewrite. An alternative is to train a neural net surrogate



model to mimic the computationally intensive functions in the code, and deploy the surrogate
on the exotic hardware instead.

While promising, there are several challenges with the general surrogate modelling approach.
Obtaining an acceptable level of accuracy is essential, as is having reliable uncertainty
quantification. Another consideration is that the input distributions are liable to drift over
time as a model is run in production, so that model versioning and continuous re-training are
necessary. Identifying the scope of a model can also be challenging in a real-world codebase, due
to layers of abstraction, a lack of separation of concerns, use of highly stateful software patterns,
and the organizing of data into object hierarchies. Finally, there are practical difficulties linking
modern machine learning tools into a legacy codebase when both require highly customized (yet
very different) build systems and environments.

2. Project goals and deliverables

PHASM (Parallel Hardware viA Surrogate Models) is a toolkit for creating Al surrogate models
within legacy scientific codebases. It is a one-year-old LDRD project at Jefferson Lab. PHASM’s
overarching goal is to systematize and formalize the process of developing AI/ML surrogate
models. It creates a smoother on-ramp for designing, testing, and bringing ML research models
into production. It aims to bridge the gap between the legacy code and the best-in-class industry
frameworks, which enforces best practices and tightens the design feedback loop. It introduces
new tools to address specific pain points that arise with legacy code, such as predicting the
surrogate model’s performance upfront, identifying the model variables, converting arbitrary
datatypes to and from tensors, and linking in a machine learning framework. If the field of
scientific machine learning (SciML) continues to accelerate, these tools could prove particularly
useful for parallelizing legacy codebases.

There are three main project deliverables: a performance analysis ‘playbook’, a model variable
discovery tool, and an API for injecting surrogate models into a legacy codebase. The playbook
tackles the question of whether a model makes sense to begin with: it provides instructions for
obtaining and interpreting hardware benchmarks and profiler data to predict what bottlenecks
the model will experience, and what overall performance will result. The model variable
discovery tool analyzes the binary to figure out the true inputs and outputs for a given target
function, returning a description of the data along with code for accessing it. Finally, the
surrogate API connects legacy code to a machine learning model in a clean, abstract way, with
a particular focus on the bidirectional data bindings between C/C++ datatypes and tensors. It
enables the user to wrap and intercept a target function, so that they can decide out-of-band (a)
whether to use the surrogate model or original function, and (b) whether to capture the inputs
and outputs and dump them to file, or use them for continuous training. These deliverables
shall be discussed in turn.

3. Performance analysis playbook

The performance analysis playbook lets the user predict, for an arbitrary target function,
whether a surrogate model would run effectively on the hardware. The playbook systematizes
the analysis procedure into an explicit checklist that details tools to use, settings to configure,
and metrics to take into account. The analysis is currently scoped to event-level parallelism and
high-throughput computing (HTC), as opposed to a spatial domain decomposition and high-
performance computing (HPC). It assumes the goal is to increase throughput and hardware
utilization, rather than to decrease latency.

There are several steps in this analysis. First is a benchmarking step to characterize the
hardware bottlenecks as per the Roofline model [3]. Next is profiling, to measure the compute
intensity and memory movement of the target function. Following that is predicting the compute
intensity of the machine learning model, which, together with the memory movement, indicates



which bottleneck will be active. The active bottleneck in turn determines the maximum
performance of the model on the hardware. The change in latency and throughput for each
event can then be predicted via Amdahl’s and Gustavsson’s laws.

Future work includes empirically validating the accuracy of this performance prediction on
real-world problems, and on identifying opportune target functions by examining a profiler’s
flame graph [4].

4. Model variable discovery tool

The model variable discovery tool (MVDT) automatically identifies, for a given function, the true
space of inputs and outputs. These are not obvious from the type signature due to complications
such as nested structures, pointers, and global variables. The model variable discovery tool traces
all memory operations within the target function and maps out the essential data. It generates
code for data binding, which is used by the surrogate API. It also reports the size and shape of
the input and output tensors, which factors into the performance analysis. A further goal is to
identify impure constructs that are particularly difficult to finesse away, such as I/O streams and
random number generators. These features help the user eliminate bad candidates for surrogate
models before going through the effort of designing and training a model. Since the MVDT is
meant to assist a human who would otherwise have to manually comb through a large amount of
unfamiliar code and write the bindings by hand, it is permissible for its analysis to be incomplete
as long as it clearly reports which code regions it couldn’t understand.

The current proof-of-concept tool traces memory movement using Intel PIN [5] to perform
a dynamic binary analysis, similar in spirit to Valgrind memcheck. PIN intercepts execution of
the binary and adds instrumentation code to track memory operations. The types and symbols
corresponding to each address are recovered from the DWARF debugging information. Although
versatile, this design has a number of practical limitations. Firstly, it is unable to observe
branches until the program execution reaches them. This means that many executions are
needed, and some branches may never be reached. Secondly, the DWARF data is complex and
fragile, even with optimization turned off. Finally, even with perfect DWARF data, recovering
the symbol and type information for a given address is computationally intensive.

The next step is to try a static analysis using clang instead, which should address all of the
above issues [6]. A static analysis can observe all execution paths at once, and because the clang
static analyzer has full access to the program’s abstract syntax tree, it can retrieve the desired
symbolic information cheaply. In the long term, if the model variable discovery tool becomes
reliable enough, it would make it possible to use PHASM’s surrogate API to intercept arbitrary
functions at runtime, without having to recompile.

5. Surrogate API

The key goal for the surrogate API is to insert a machine learning model into the middle
of a legacy codebase without rearchitecting the surrounding code. It provides a high-level
interface for specifying the model, its hyperparameters, its input variables, and their bounds.
Meanwhile it abstracts away the work of integrating the machine learning framework, capturing
training samples, choosing additional training samples, training the model, loading and storing
the trained model, and switching between the original function and the surrogate.

Figure 1 shows the most basic usage of PHASM. The legacy codebase implements a function
£, which accepts two doubles and returns a double. This function is ideal for surrogate modelling
because it is pure, continuous, differentiable, and has low dimensional inputs and outputs. The
first step is to hide this function from its callees by wrapping it in a namespace (1). Next we
define a surrogate model via the builder interface (2). In the general case this should be defined
statically, because the original function has static duration. In (3), we declare that we will be
using a simple feedforward network with 1 hidden layer of 10 nodes. Next we declare the model’s



namespace wrapped { /7 (1)
double f(double x, double y) {
return 3*x*x + 2%y;

1}
auto f_surrogate = phasm::SurrogateBuilder() /7 (2)
.set_model(std: :make_shared<phasm: :FeedForwardModel>(1,10)) /7 (3)
.local_primitive<double>("x", phasm::IN) /7 (4)
.local_primitive<double>("y", phasm: :IN)
.local_primitive<double>("z", phasm::0UT)
.finish();
double f(double x, double y) { /7 (5)
double z = 0.0;
f_surrogate
.bind_original_function([&] (){z = wrapped::f(x,y);}) /7 (6)
.bind_all_callsite_vars(&x, &y, &z) /7 (1)
.callQ); // (8)
return z;
}

Figure 1. The simplest usage of the PHASM surrogate API

inputs and outputs (4). Note that PHASM’s model abstraction supports adding adapter layers
so that a generic foundation model can be matched with the precise input and output shapes,
if necessary.

We now define the wrapper function f, with the exact same signature as its wrapped
predecessor (5). We set up two bindings: Firstly, so that the surrogate can call the original
function, we pass it a zero-argument lambda in (6) that captures the local callsite variables
X,¥,z. Secondly, so that the surrogate can transform the local callsite variables into tensors, we
pass it pointers to the local callsite variables in the same order they were declared. Finally, we
call the surrogate model via call (8). This may call the original function and capture training
data, or it may call the model directly, or it may train the model — its behavior is configured
out-of-band via the PHASM_CALL_MODE environment variable.

The example from Figure 1 illustrates the best-case scenario for surrogate modelling, where
the target function arguments match the model variables exactly. In the general case, however,
the target function might reference global or thread-local variables, chase pointers inside nested
structures, iterate over an array or collection, or handle missing values such as nulls or unions. To
accommodate these, the surrogate API maintains a clean separation between “callsite variables”
(defined to be pointers to arbitrary C++ types that are in scope at the target function call site)
and “model variables”, which are named tensors of primitives.

To express the relationship between these two sets of variables in a declarative way, PHASM
maintains a tree of profunctor optics. Profunctor optics are small composable ‘getter and setter’
objects that are generalized to support nested structures (‘lenses’), missing values (‘prisms‘),
one-to-one type conversions (‘isos’), and multiple values (‘traversals’) [7]. They were developed
by the functional programming community in order to cleanly read and update nested immutable
data structures. Chaining together a sequence of optics yields a new, specialized optic. PHASM’s
optics tree has roots corresponding to callsite variables, branches that each handle one level of
data nesting, and leaf nodes corresponding to model variables. To construct this tree in a clean,
intuitive, and correct way, PHASM provides a builder interface with a typed cursor so that it
only accepts valid options for the datatype at that nesting level.

Figure 2 illustrates typical usage of PHASM’s surrogate API with complex data, and Figure 3



struct Vec { double x, y; }; /7 (1)
double dist = 0;

namespace wrapped {
void manhattan_dist(Vec* coords) {

for (int i=0; i<4; ++i) { dist += s[i]l->x + s[il->y; } /7 (2)
1}

auto surrogate = phasm::SurrogateBuilder()
.set_model(std: :make_shared<phasm: : TorchScriptModel>("model.pt"))

.global_primitive<int>("dist", &dist, phasm::INOUT) // (3)
.local<Vec>("coords") /7 (4)
.array<Vec>(4) /7 (5)
.accessor<double>([] (Vec *s) { return &(s->x); }) // (6)
.primitive<double>("x", phasm::IN) /7 (7)

.accessor<double>([] (Vec *s) { return &(s->y); })
.primitive<double>("y", phasm::IN)
.end ()
.end ()
.finish();

void manhattan_dist(Vec* coords) {
surrogate.bind_original_function([&] () {wrapped: :manhattan_dist(coords);})
.bind_all_callsite_vars(coords)
.call();

Figure 2. Usage of the PHASM surrogate API with fixed-length arrays, structs, and globals.

coords: () -> Vecx (local) Vecx —> Vec[4] Vec* —> doublex x: double* -> tensor (in)

\\\\\\\\\“‘ Vecx -> doublex y: doublex -> tensor (in)

dist: () -> doublex (global) dist: double* -> temsor (in)
\ dist: double* -> tensor (OUt)

Figure 3. Optics tree corresponding to Figure 2.

shows the corresponding optics tree that is constructed internally. The target function accepts
a fixed-size array of struct Vec (1), iterates over each entry, summing the x and y fields, and
writing the result to a global variable (2). We start by declaring the global primitive dist as
both an input and an output (3). Under the hood, one callsite variable is constructed, which is
connected directly to two model variables, one for input and one for output. This is important
because the original function is impure, yet its tensor equivalent remains pure, which is essential
for reliably training the model.

Next we declare a local callsite variable, coords (4). The builder opens a cursor to type
Vec*, constraining any child optics to have that as their input type. Since the coords pointer is
actually a decayed array, we apply an ‘array‘ traversal (5). Next we define accessor lenses that
reach into each Vec* in that array and pull out the x and y values (6). Since we have reached



actual model variables, we add a leaf to our optics tree using the primitive iso (7). This iso is
the base case of a recurrence: it copies the pointed-to data to a fresh tensor object (optionally
with a different dtype) and passes this tensor back to its parent optic. Each parent optic
manipulates its children’s tensors as needed: for instance, the array traversal performs a tensor
stack operation. By the time the recurrence unwinds to the roots, the tensors corresponding to
each model variable will have been fully constructed, and tensors x and y will have shape (4, )
automatically.

Presently, the surrogate API supports C-style data structures: structs, arrays (fixed and
variable-length), unions, and nullable pointers. C++ poses additional challenges, such as
handling objects that lack a default constructor or maintain an invariant, in particular STL
collections. Other plans for the surrogate API include putting the machine learning framework
behind a dynamically loaded plugin interface for easier integration with legacy build systems,
and communicating with MLFlow for model version management.

6. Long-term goals

The long-term goal for PHASM is to create an interactive tool for designing and testing surrogate
models within a legacy scientific codebase, without even having to recompile. This would be
analogous to a debugger, as the user could pause a running program and interactively choose
options such as rewriting the binary to replace an arbitrary function with a surrogate model,
tuning the model’s hyperparameters, capturing training data and bounds, and profiling both
the original function and its surrogate. This would make it possible to empirically explore the
limits of surrogate models for functions of increasing size and complexity.

PHASM is also a convenient platform for further research into SciML uncertainty
quantification and continuous learning. If the surrogate model returns an uncertainty estimate
below some preset threshold, PHASM could defer back to the original function instead, and
capture the result as training data. Furthermore, because PHASM keeps track of the bounds of
its input space, it could immediately redirect out-of-bounds inputs to use the original function.
Finally, because the mapping between C/C++ types and tensors is fully bidirectional, PHASM
could generate new inputs as tensors, transform them back into C++ datatypes, evaluate the
original function, and capture the outputs as training data. Thus, PHASM could understand
what region of the input space its model is valid for, and then expand this region autonomously.
While PHASM could sample the input space by using well-understood techniques such as Latin
Hypercubes, it could also generate input samples by leveraging static analysis or fuzzing. The
ability to move back and forth between an algorithm’s code representation and its neural net
representation yields intriguing possibilities.
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