
Accelerating Machine Learning inference using

FPGAs: the PYNQ framework tested on an AWS

EC2 F1 Instance

M Lorusso1,2, D Bonacorsi1,2 and R Travaglini2

1Alma Mater Studiorum - University of Bologna, Viale Berti-Pichat 6/2, Bologna, Italy
2INFN - Bologna division, Viale Berti-Pichat 6/2, Bologna, Italy

E-mail: marco.lorusso11@unibo.it

Abstract. In the past few years, using Machine and Deep Learning techniques has become
more and more viable, thanks to the availability of tools which allow people without specific
knowledge in the realm of data science and complex networks to build AIs for a variety of
research fields: in the context of High Energy Physics, new algorithms based on ML are being
tested for event selection in trigger operations, end-user physics analysis, and more. Time critical
applications can benefit from implementing algorithms on low-latency hardware like specifically
designed ASICs and programmable micro-electronics devices known as FPGAs.

In order to facilitate the translation of ML models to fit in the usual workflow for
programming FPGAs, a variety of tools have been developed. One example is the HLS4ML
toolkit, developed by the HEP community.

This paper presents and discusses the activity started at the Physics and Astronomy
department of University of Bologna and INFN-Bologna devoted to preliminary studies for the
trigger systems of the CMS experiment at the CERN LHC accelerator. A broader-purpose open-
source project from Xilinx (a major FPGA producer) called PYNQ is being tested combined
with the HLS4ML toolkit.

Even though a rich documentation can be found on how to use hls4ml, a comprehensive
description of the entire workflow from Python to FPGA is still hard to find. This work tries
to fill this gap, presenting hardware and software set-up, together with performance tests.

1. Field Programmable Gate Array
Field Programmable Gate Arrays (FPGAs) [1, 2] are specialized devices that that implement
circuits just like hardware, delivering significant power, area, and performance advantages over
software. Furthermore, these devices can be easily and inexpensively reprogrammed to handle a
broad range of tasks. Creating an FPGA-based circuit involves configuring the memory bits that
control each routing decision with the necessary values, which is accomplished by generating a
bitstream to load into the device. This typically involves starting with an application written
in a hardware description language (HDL), such as VHDL or Verilog. However, in this study, a
”higher-level” approach was employed using tools and libraries that enable FPGA design to be
completed from a behavioral description written in C++ or, in the case of neural networks, in
Python.



1.1. AWS EC2 F1 Instance
To evaluate the effectiveness of the implementation workflow proposed in this study, Amazon
Web Services’ EC2 F1 instances with Xilinx FPGA acceleration cards were employed. These
F1 instances come with various tools to facilitate the development, simulation, debugging, and
compilation of hardware acceleration code, such as an FPGA Developer Amazon Machine Image
(AMI) that supports various development environments suited for both low-level hardware
developers and software developers who are more comfortable with C/C++ and OpenCL
environments. When the FPGA design is finished, it can be registered as an Amazon FPGA
Image (AFI) and deployed to any F1 instances required.

2. The Implementation of a NN on FPGA
Improving the transverse momentum measurement performed by the Compact Muon Solenoid
(CMS) muon Level-1 trigger, namely the momentum resolution, is very important to achieve a
reduction of trigger rates. In fact, due to the rapidly decreasing shape of the inclusive muon pT
spectrum, even a relatively small reduction of the resolution can provide a significant decrease
of the trigger rate at a given pT threshold, by reducing the number of low momentum muon
candidate misidentified as high momentum ones. This becomes particularly pressing in the
context of future upgrades of CMS, in view of the High Luminosity LHC upgrade, to avoid using
higher momentum thresholds as luminosity increases, with the consequence of losing physics
acceptance.

By implementing an Artificial Neural Network (NN), a class of Machine Learning (ML)
algorithms, on an FPGA, this work places itself in the search for ways to make the pT prediction
faster, other than more accurate.

1 import tensorflow as tf

2 from qkeras.qlayers import QDense , QActivation

3

4 netinputs = tf.keras.layers.Input(shape =(27 ,),dtype=X_train.dtype)

5 x = QActivation(activation=quantized_relu (16,6, relu_upper_bound =6.0),

6 name='qrelu1 ')(inputs)
7

8 x = QDense (35, kernel_quantizer=quantized_bits (16,5, alpha =1),

9 bias_quantizer=quantized_bits (16,5,alpha =1),

10 kernel_initializer='random_normal ',name='qdense_1 ')(x)
11 x = QActivation(activation=quantized_relu (16,6), name='qrelu2 ')(x)
12

13 #...# List of layers and activation functions

14 output = tf.keras.layers.Activation('softmax ', name='soft1 ')(x)
15

16 model = tf.keras.Model(inputs=netinputs ,outputs=netoutput ,name="model")

17 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy ')
18 history = model.fit(X_train , Y_train , epochs=num_epochs , validation_data =(X_test

, Y_test))

Listing 1: Building a Fully Connected Neural Network using QKeras.

2.1. The Model
The model built for this research is the next iteration of the Fully Connected Multilayer
Perceptron regressor designed for my previous work in [2, 3]. Its purpose was to find an
alternative algorithm to perform transverse momentum (pT ) assignment to muons in the context
of the Level-1 trigger at the CMS experiment at CERN. This NN has been implemented with
the following structure: the first hidden layer has 35 neurons and receives the information
directly from the input layer of 27 different features with the ReLU (Rectified Linear Unit)
selected as activation function. The second layer is identical to the first one but contains 20



neurons and this is repeated for other 4 additional hidden layers with 25, 40, 20 and 15 neurons,
respectively. In the end, the output layer (with only one node) closes the network. A snippet of
code describing how to create such network is in Listing 1. The model has been optimized for
hardware implementation with pre-training quantization [4] and weight pruning.

2.2. The Implementation
The first step required for the implementation of a Neural Network on an FPGA is the conversion
of the high-level code used for the creation of the model (Python + Tensorflow & QKeras) into
High Level Synthesis (HLS) code. HLS describes the process of automatic generation of HDL
code from behavioural description contained in a C/C++ script. To accomplish this task, the
hls4ml package [5] has been used. This tool has been developed by members of the High Energy
Physics (HEP) community to translate ML algorithm, built using frameworks like TensorFlow2,
into HLS code. The process of setting up the conversion step using hls4ml is demonstrated in
Listing 2. First, a configuration dictionary is created, allowing for the customization of per-
layer settings. Next, the target hardware for the firmware is specified to set up the conversion.
Finally, the project can be compiled, which involves the creation of relevant folders and scripts,
and can be built if necessary by performing synthesis using Vivado HLS.

1 import hls4ml

2

3 config = hls4ml.utils.config_from_keras_model(model , granularity='model')
4 hls_model = hls4ml.converters.convert_from_keras_model(model ,

5 hls_config=config , part='<id of FPGA model >')
6 hls_model.compile ()

7 hls_model.build(csim=False ,synth=False)

Listing 2: Example of simple configuration and use of the hls4ml library.

Once the target hardware has been defined, and the trained model converted into HLS code using
hls4ml (more details are available in [2, 3]), the project has to be imported in Vitis, a tool part of
the Xilinx Design Suite, dedicated to developing applications for data center acceleration cards.
Here the C++ code must be tweaked in order to expose the interface of the Neural Network
and make it compatible with the Application Acceleration development flow, offered by Vitis.

Then, we can instruct Vitis to build the entire project targeting the desired hardware. This
will produce a bitstream file used to flash our design onto the FPGA. Together with the firmware
design, an OpenCL application can be written that can be launched on the machine that houses
the FPGA to program it, start the inference and retrieve the results (as shown in the next
section).

Moreover, to deploy a design on Amazon’s F1 instances, the bitstream must be uploaded
to an Amazon S3 Bucket and request the creation of an Amazon FPGA Image (AMI) using a
script included in the official github repository of the AWS EC2 FPGA Hardware Development
Kit [6]. This will produce a awsxclbin file that can be used to program Amazon’s FPGAs.

2.3. The PYNQ Project
PYNQ [7] is a project developed by Xilinx®, a leading FPGA manufacturer, which offers a
Python API-based framework for utilizing Xilinx platforms and AWS-F1 instances via a Jupyter-
based interface.

FPGA designs are represented as Python objects referred to as overlays, which can be
accessed via a Python API. Although creating a new overlay still requires skilled developers with
experience in designing programmable logic circuits, overlays are designed to be configurable and
re-used as much as possible in various applications, much like software libraries.

Traditionally, C or C++ have been the most common embedded programming languages.
Python, on the other hand, raises the level of programming abstraction and increases



programmer productivity. These options are not mutually exclusive, however. PYNQ employs
CPython, which is written in C and can be extended with optimized C code while also integrating
thousands of C libraries. Whenever possible, the more productive Python environment should
be employed, and lower-level C code can be utilized whenever efficiency demands it.

1 import pynq

2 ov = pynq.Overlay("model_binary.awsxclbin")

3 nn = ov.myproject

Listing 3: Programming and calling kernel function using PYNQ.

PYNQ strives to work on any computing platform and operating system, which it
accomplishes by utilizing a web-based architecture that is also browser-agnostic. The open-
source Jupyter notebook infrastructure is used to execute an Interactive Python (IPython)
kernel and a web server directly on the ARM processor of an MPSoC or the host CPU of an
acceleration card.

1 auto devices = xcl:: get_xil_devices ();

2 auto fileBuf = xcl:: read_binary_file(binaryFile);

3 cl:: Program :: Binaries bins{{ fileBuf.data(), fileBuf.size()}};

4 OCL_CHECK(err , context = cl:: Context ({ device}, NULL , NULL , NULL , &err));

5 OCL_CHECK(err , q = cl:: CommandQueue(context , {device}, CL_QUEUE_PROFILING_ENABLE

, &err));

6 OCL_CHECK(err , cl:: Program program(context , {device}, bins , NULL , &err));

7 OCL_CHECK(err , krnl_vector_add = cl:: Kernel(program , "vadd", &err));

Listing 4: OpenCL code to programme a FPGA.

In Listing 3 how simple it is to load a firmware on an FPGA and retrieve the kernel function
inside the design is shown. This can be considered equivalent to the code in Listing 4, which is
much less straightforward. Furthermore, to actually send and receive data from the FPGA and
run the algorithm, the code in Listing 5 is needed. On the other hand, using PYNQ the creation
of input and output buffer is done by calling the allocate function, which returns objects that
behave like numpy arrays and can be moved to and from the device with sync_to_device() and
sync_from_device(). Finally, the kernel function is callable providing the buffers, for example:
nn.call(input,output).

1 OCL_CHECK(err , l:: Buffer buffer_in1(context ,

2 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY , vector_size_bytes ,

3 source_in1.data(), &err))

4

5 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ buffer_input}, 0 /*0 means from

host*/,NULL ,& eventinp));

6

7 OCL_CHECK(err , err = myproject.setArg(0, buffer_input));

8 OCL_CHECK(err , err = myproject.setArg(1, buffer_output));

9 //[...]

10 OCL_CHECK(err , err = q.enqueueTask(myproject ,NULL ,& eventker));

11 // wait for all kernels to finish their operations

12 OCL_CHECK(err , err = q.finish ());

13

14 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ buffer_output},

15 CL_MIGRATE_MEM_OBJECT_HOST));

Listing 5: OpenCL code to create I/O buffers and call the kernel function of the FPGA firmware.

3. Neural Network model performance on FPGA
Two main aspects have been considered to study the performance of using the PYNQ package
to carry out Neural Network inference on an FPGA: latency and inference accuracy.



Figure 1: Total inference time distribution (input injection + inference + output extraction)
using PYNQ (pink) and an OpenCL application (blue).

For the first metric, the wall time was measured for three main tasks that the host-FPGA
pair performs for each requested inference. The three tasks are input injection on the FPGA
card, actual inference, and output extraction. In the PYNQ case, a certain degree of consistency
can be observed between the execution times of these tasks. This consistency can be attributed
to a common overhead caused by Python’s interpreted nature. This overhead is also the main
reason for the overall longer total processing time of the PYNQ implementation compared to
the C++ application. The total inference time distribution is shown in Figure 1, where the
overall lower times using OpenCL can clearly be seen.

Nonetheless, the main objective of using PYNQ is offering an easier interface and less steep
learning curve in dealing with accelerating algorithms using FPGAs. This means that, to achieve
the full potential of this type of hardware, the traditional approach using C/C++ application
is still the way to follow.

3.1. pT resolution histogram
The accuracy of the NN model implemented on the F1 instance was studied using pT resolution

histograms. For each dataset entry, the histograms were built using ∆pT
pT

=
pTest−pTsim

pTsim
,

where pTest is the estimation of the transverse momentum and pTsim is the ”true” transverse
momentum associated with each validation set entry. Firstly, the resolution of the model before
implementation on the FPGA was checked, with the red histogram representing the resolution
distribution of the Level-1 trigger system and the blue histogram showing the resolution of the
predictions made by the network model running on a consumer CPU (Figure 2a). The ML
resolution had a less broad distribution, resulting in an overall improvement with respect to the
Level-1 trigger system. The Machine Learning based momentum assignment is also less prone
to large pT underestimation. After verifying the accuracy of the NN model, its implementation
on the FPGA available in the F1 instance was analyzed. The pT resolution histogram obtained
by performing the inference using the PYNQ environment is shown over the model resolution
described before in Figure 2b. Slightly worse results were produced when the assignment was
performed on an FPGA, with a small bias towards higher values of ∆pT /pT . This could be
the effect of the loss in precision the input features have to go through due to the conversion to
fixed-point representation needed to perform computations efficiently in an FPGA. Nevertheless,
the hardware approach still appears compatible or, in case of higher momenta, even better than
the Level-1 trigger based momentum assignment.



(a) Machine learning model (blue) v. Level-1 trigger
(red) based momentum assignment. (b) Machine learning model inference on FPGA v.

a consumer CPU.

Figure 2: Transverse momentum resolution histograms.

4. Conclusions
The combination of the HLS4ML toolkit and the PYNQ open-source project from Xilinx, a
leading FPGA producer, was utilized in this work to program a Neural Network on an FPGA and
perform inference. PYNQ enables designers to take advantage of the benefits of programmable
logic and microprocessors using the Python language. Cloud computing resources were utilized
to evaluate the capabilities of this workflow, from creating and training a Neural Network to
generating an HLS project using HLS4ML, testing predictions of the NN using PYNQ APIs and
functions written in Python.

The hardware and software set-up were evaluated along with performance. The results showed
an increase in algorithm latency when using PYNQ compared to a more conventional approach of
interacting with an FPGA via an OpenCL application. This latency increase can be attributed to
Python’s interpreted nature, resulting in additional overhead. Consistency between the Neural
Network’s predictions before and after implementation on the FPGA was validated.

References
[1] Hauck S and DeHon A 2007 Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation

(San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.) ISBN 9780080556017
[2] Lorusso M FPGA implementation of muon momentum assignment with machine learning at the CMS level-1

trigger Master’s thesis URL http://amslaurea.unibo.it/23211/

[3] Diotalevi T, Lorusso M, Travaglini R, Battilana C and Bonacorsi D 2021 Deep Learning fast inference on
FPGA for CMS Muon Level-1 Trigger studies Proceedings of International Symposium on Grids & Clouds
2021 — PoS(ISGC2021) vol 378 p 005 URL https://doi.org/10.22323/1.378.0005

[4] Coelho C N, Kuusela A, Li S, Zhuang H, Ngadiuba J, Aarrestad T K, Loncar V, Pierini M, Pol A A and
Summers S 2021 Nature Machine Intelligence 3 675–686 ISSN 2522-5839 URL https://doi.org/10.1038/

s42256-021-00356-5

[5] Duarte J, Han S, Harris P, Jindariani S, Kreinar E, Kreis B, Ngadiuba J, Pierini M, Rivera R, Tran N and Wu Z
2018 Journal of Instrumentation 13 P07027 URL https://dx.doi.org/10.1088/1748-0221/13/07/P07027

[6] Aws-fpga: Official repository of the aws ec2 fpga hardware and software development kit URL https:

//github.com/aws/aws-fpga

[7] Pynq introduction - python productivity for zynq (pynq) URL http://pynq.readthedocs.io/

http://amslaurea.unibo.it/23211/
https://doi.org/10.22323/1.378.0005
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.1038/s42256-021-00356-5
https://dx.doi.org/10.1088/1748-0221/13/07/P07027
https://github.com/aws/aws-fpga
https://github.com/aws/aws-fpga
http://pynq.readthedocs.io/

