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Abstract. The CMS software framework (CMSSW) has been recently extended to integrate
heterogeneous computing with the aim of performing part of the physics reconstruction with
GPUs to face the computational challenge that will come with the increase of luminosity during
the High-Luminosity phase of the Large Hadron Collider (HL-LHC). To avoid writing a different
implementation of the code for each backend, a performance portability library is used: Alpaka
has been chosen as the compatibility layer for Run-3. With the idea of exploring new solutions,
SYCL has been considered since it would allow to target also Intel GPUs.

SYCL is a cross-platform abstraction C++ programming model for heterogeneous
computing. It allows developers to reuse code across different hardware and also perform
custom tuning for a specific accelerator. The SYCL implementation used in this work is the
Data Parallel C++ library (DPC++) in the Intel oneAPI Toolkit.

This work shows the performance of physics reconstruction algorithms written in SYCL on
different hardware. Strengths and weaknesses of this heterogeneous programming model will
also be presented.

1. Heterogeneous computing and performance portability libraries
In the High-Luminosity phase of the LHC (HL-LHC) the accelerator will reach an instantaneous
luminosity of 7 · 1034 cm−2 s−1, with an average pileup of 200 proton-proton collisions. This
will lead to a computational challenge for the online and offline reconstruction software that
has been and will be developed. To face this complexity online CMS has decided to leverage
heterogeneous computing [1], meaning that accelerators will be used instead of CPUs only.

To be prepared for Run 4, CMS equipped the current Run 3 production High Level Trigger
(HLT) nodes with NVIDIA Tesla T4 GPUs that are currently used for: pixel unpacking, local
reconstruction, tracks and vertices, ECAL unpacking and local reconstruction, HCAL local
reconstruction.

This choice has resulted in higher throughput thanks to the use of accelerators, better physics
performance due to the fundamental redesign of the algorithms to fully exploit the parallelism
capabilities of GPUs and better performance per kW and per cost. The goal for the HL-LHC is
to offload at least 50% of the HLT computations to GPUs in Run 4 scaling up to 80% in Run 5.



Currently, the code to be executed on GPUs is written in CUDA specifically for NVIDIA
GPUs [2]. This approach should be avoided because it introduces code-duplication that is not
easily maintainable. A possible solution is the use of performance portability libraries, that allow
the programmer to write a single source code which can be executed on different architectures.

The CMS experiment has evaluated some performance portability libraries and Alpaka [3]
has been chosen for Run 3. The migration from CUDA to Alpaka at the HLT will be completed
before the resuming of Run 3 in 2023. Despite this, studies on this kind of libraries are still
ongoing and other solutions are being explored.

2. Intel implementation of SYCL: oneAPI and DPC++
Recently Intel started developing the Data Parallel C++ (DPC++), an open-source compiler
project that is part of the oneAPI programming model [4]. DPC++ is based on SYCL [5], a
cross-platform abstraction layer maintained by Khronos Group that allows code to be written
using standard ISO C++ both for the host and the device in the same source file. DPC++
supports many backends: CPUs, Intel FPGAs, Intel, NVIDIA and AMD GPUs. The support
for the CUDA and HIP backends has been introduced in the Intel oneAPI 2023 release (released
December 2022), therefore in this work to target NVIDIA and AMD GPUs the open source
Intel’s LLVM Compiler [6] has been used.

The single-source code written in SYCL can be compiled for different accelerators allowing
the user to choose the preferred device at runtime.

The SYCL programming model starts from the definition of a queue, associated to a
specific device, that is used to submit memory operations and kernels. Those operations run
asynchronously on the device and the execution order is sequential only if explicitly specified,
therefore synchronization is required before accessing results from the host.

There are different reasons to explore this library starting from the fact that when a new
compatibility layer is developed, it is always relevant to explore its performance in comparison
to native code and other compatibility layers. Being a royalty-free project, SYCL can count
on a variety of implementations. This allows for more flexible adaptations of the standard to
specific needs. Furthermore, it is supported by many actors in the tech industry, which bodes
well for the future support of the standard.

3. Writing reconstruction algorithms with SYCL/oneAPI
SYCL/oneAPI has been tested on two workflows:

• CLUE [7] [8]: CMSSW TICL clustering algorithm

• pixeltrack-standalone [9] [10]: the Patatrack pixel tracks and vertices reconstruction

The data used to perform the benchmark are available in both repositories. To ease the
testing process, a simplified version of CMSSW framework [11] has been developed to allow
the testing of specific modules. For both workflows, the framework and the modules have been
implemented in C++ (native serial) and CUDA and then with different portability libraries.

The goal is to test those performance portability solutions based on: programming
experience/ease of development, ease of Framework integration, performance with respect to
the native implementation, performance of fallback to CPU, user support, supported backends
and long-term prospects. In this work, all of these points will be addressed for what concerns
SYCL.

Here the programming experience is assessed, based on the porting of both the framework
and the algorithms from the CUDA implementation. Starting from the framework integration,
the device selection, memory operations and queues and events management had to be adapted
to SYCL logic. A device selector has been introduced since the CUDA version did not need one
being able to target only NVIDIA GPUs. Regarding the framework, the main change in the



SYCL version is the dealing with sycl::events that, unlike the CUDA ones, cannot be reused
during the execution leading to the creation of new ones when needed with the consequence of
slowing down the execution.

The first algorithm ported to SYCL is CLUE, short for CLUstering of Energy, a fast
and parallelizable density-based clustering algorithm specifically designed to be used in high
granularity calorimeters. There are two possible implementations both starting the clustering
procedure from hits: CLUE 2D creates clusters on a single layer of the detector and CLUE 3D
creates tracksters, i.e. clusters across all the detector layers. Both algorithms have been written
in SYCL and tested. CLUE contains few different kernels without complex patterns, therefore
the migration from CUDA consisted mostly in adapting the kernels submission. This process
was quite smooth and no major challenges were encountered.

The Patatrack pixel tracks and vertices reconstruction is more complex since it consists of
more than thirty kernels with particular patterns used to better exploit parallelism, like warp-
level primitives and group functions. The migration of the code in this case was not trivial
and highlighted some of the current limitations of SYCL. In particular, a few bugs have been
discovered and reported to Intel developers, while some features used in the CUDA version of
the code are not yet supported. Both cases required the implementation of workarounds to
obtain a fully working application. An additional challenge involved the Eigen library [12], used
in pixel track reconstruction, which had only partial support for SYCL. Manual modifications
were necessary to adapt it for use in the SYCL version of the pixel track reconstruction code.

All the physics results of the SYCL applications have been validated before looking at the
computing performance.

4. Computing performance
The performance has been evaluated on:

• CPU AMD Ryzen 9 5900X and GPU NVIDIA GeForce GTX 1080 for CLUE 2D and the
pixel tracks reconstruction

• CPU Intel Xeon Silver 4114 and GPU NVIDIA Tesla T4 for CLUE 3D

The SYCL version (color: blue) has been compared with the already existing native versions
(serial C++ and CUDA, color: pink) when available and with the Alpaka version. The native
CUDA version is not available for CLUE since it is not maintained anymore (CLUE 2D) or has
been written directly in Alpaka (CLUE 3D). The Alpaka library can target CPUs and NVIDIA
GPUs using two different backends, one based on serial C++ or CUDA (color: green) and the
other based on SYCL (color: orange). The SYCL backend of Alpaka has been introduced to
target also Intel GPUs and FPGAs but is still in an experimental state. For the scope of this
work, this backend has been used with little modification to target also NVIDIA GPUs. The
memory management in SYCL can be achieved with either buffers or Unified Shared Memory
(USM). In our applications USM has been used, while the SYCL backend of Alpaka supported
only buffers. For this reason, the necessary changes have been made to add support for USM to
be able to use it with our applications. At the moment of writing only CLUE 2D run successfully
with the SYCL backend, while some bugs are preventing the testing on the other algorithms.
Regarding the CPU backend, the main difference between the native version and the SYCL
version is that the native version is serial, while SYCL introduces vectorization by default.

A plot has been realised for each application showing the throughput, i.e. the number of
events per seconds, as a function of the number of concurrent events processed. As a general
rule the solid lines refer to GPU benchmarks, while dashed lines are used for the CPU ones.
The color code indicated above is the same for all the plots. Each point is the average of ten
repetitions with 1k events on the CPU and 10k events on the GPU.



(a) Results for CLUE 2D varying the number
of concurrent CPU threads on an GPU NVIDIA
GeForce GTX 1080 (solid lines) and on an CPU
AMD Ryzen 9 5900X (dashed lines). The GPU
implementations are: the Alpaka version compiled
with the SYCL backend and the CUDA backend,
and the SYCL version. The CPU implementations
are: the native C++ version, the Alpaka version
compiled with the serial backend and the SYCL
backend, and the SYCL version.

(b) Results for CLUE 3D varying the number of
concurrent CPU threads on an GPU NVIDIA Tesla
T4 (solid lines) and on an CPU Intel Xeon Silver
4114 (dashed lines). The GPU implementations
are: the Alpaka version compiled with the CUDA
backend and the SYCL version. The CPU
implementations are: the SYCL version, the native
C++ version and the Alpaka version compiled with
the serial backend.

Figure 1: CLUE 2D and CLUE 3D performance plots

Starting from CLUE, the performance is shown in fig. 1a for CLUE 2D and in fig. 1b for
CLUE 3D. The results on the CPU are comparable in both versions, while for the GPU the
performance of SYCL is slightly worse than that of Alpaka. In CLUE 2D the Alpaka version
running on an NVIDIA GPU through the SYCL backend outperforms the other versions, no
explanation has been found to this yet. Overall, SYCL shows good performances on those
application.

Looking at the performance of the pixel tracks reconstruction in fig. 2, the results show a
bigger gap between SYCL and the native and Alpaka versions for both the GPU and CPU.
Some profiling and analysis have been done to try to understand the reasons of this gap in
performance. The main slowdowns observed concern methods that are slower with respect to
their CUDA counterpart. This behaviour has been observed especially in the so-called group
functions, that operate across threads of different blocks. Another worsening of the performance
is due to the way events are defined in SYCL that prevents us from reusing them. Furthermore,
an event is created by default for each memory operation and kernel submission even if not used.
Although there is the possibility to avoid creating those events, it has the consequence of not
being able to create events at all, making this option useless in our application.



Figure 2: Results for the pixel
tracks reconstruction varying
the number of concurrent CPU
threads on a GPU NVIDIA
GeForce GTX 1080 (solid lines)
and on a CPU AMD Ryzen
9 5900X (dashed lines). The
GPU implementations are: the
native CUDA version, the Al-
paka version compiled with the
CUDA backend and the SYCL
version. The CPU implemen-
tations are: the Alpaka version
compiled with the serial back-
end, the native C++ version
and the SYCL version.

5. Conclusion and Future Perspectives
For the HL-LHC phase, the CMS detector will have to undergo significant upgrades to keep up
with the massively increased data rates and also to renew components and modules deteriorated
by the highly radioactive environment where the detectors are. This must be accompanied by
corresponding software upgrades to process and analyze the collected data with very strict time
constraints. This has led CMS to explore the possibilities offered by heterogeneous computing,
which would allow it to offload part of the computing work to different accelerators. To avoid
code duplication and enhance maintainability, compatibility layers have been explored and
Alpaka has been chosen for Run 3. Throughout this work, the performance of SYCL has
been explored with two CMS workflows. The results obtained in this context are somewhat
promising, showing the ability to write a single source code and produce an executable able to
run on CPUs, Intel GPUs, and NVIDIA GPUs with good performance results.

However, there still are some key issues in the SYCL implementation used: the good results
achieved with CLUE have not been reproduced in the pixel tracks reconstruction. In this
application there are many complex patterns that affected the performance since they are not
optimized in SYCL or not fully supported yet. During the development, bugs in the compiler
have been found that required workarounds to obtain a working version or affected the portability
of the code. On the other hand, the long debugging process helped pushing the development of
SYCL/oneAPI since all the issues found have been reported to the Intel team working on the
compiler.

In conclusion, SYCL has shown really good performance on a simple application, but when
looking at more complex patterns there is still a noticeable gap between SYCL and the native
implementation that makes the former not suitable for being used as a portability layer in
CMSSW in the near future.
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