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Abstract.
We present the latest developments in Analysis Description Language (ADL), a declarative

domain-specific language describing the physics logic of a particle physics data analysis
independent of frameworks, and CutLang, its runtime interpreter. Alongside continuous ADL
syntax refinements through implementation of real world analysis examples, static program
analysis tools for ADL are being developed, starting with a standalone graphviz-based tool to
generate analysis logic graphs. For CutLang, a major revision to enable decoupling input
data information and external functions from the core ADL syntax is underway. We also
introduce the newly developing Dynamic Domain Specific eXtensible Language (DDSXL)
protocol that generalizes the use of ADL and CutLang to multiple domains. DDSXL hosts
numerous programming languages and frameworks. Domain ecosystems can be integrated into
abstract DDSXL development environment using various OOP design patterns and a set of rules
determined through communication over the network.

1. Introduction
The CERN Large Hadron Collider (LHC) experiments already published several thousand
physics analyses, reflecting a diverse and creative physics program. These analyses have
broadly similar workflows that consist of dataset handling, event processing, visulization and
statistical analysis. The physics logic in these analyses includes defining analysis objects,
defining quantities based on event properties, selecting events, re-weighting simulated events
to improve their agreement with real collision events, estimating backgrounds and interpreting
experimental results by comparing them to predictions. Workflow management and physics logic
are traditionally implemented in software frameworks coded based on general purpose languages
(GPLs) such as C++ / Python. Yet, the framework architectures largely vary from experiment
to experiment, even analysis to analysis. This technical diversity fosters inventiveness, but it
may also hinder communication and long term preservation of analysis details.

In recent years, using declarative or domain-specific languages (DSLs) have emerged as an
alternative approach to imperative programming with GPLs for a clearer and more systematic
expression of analysis workflows or physics logic. DSLs are inherently self-documenting and
decouple from the backend implementation, allowing updates to the backend as new technologies
become available. Declarative programming, on the other hand, by definition allows direct



expression of the logic via a higher-level programming, without an explicit description of the
control flow. These features can be particularly advantageous in physics logic description as
they enable presenting the physics information in a way decoupled from execution details.
Consequently, declarative or domain-specific programming approach is being increasingly
adopted in developing infrastructures for physics analysis.

In this note, we will focus on one prominent example, Analysis Description Language (ADL)
and its runtime interpreter infrastructure CutLang, which provide a multipurpose setup for
a wide range of studies including analysis design, reinterpretation, preservation, visualization,
comparison, etc. After introducing the language and the interpreter, we will discuss the latest
technical developments. Then, we will present Dynamic Domain Specific eXtensible Language
(DDSXL), a new infrastructure to generalize the use of ADL and CutLang to multiple domains.

2. Analysis Decription Language
Analysis Description Language (ADL) is a declarative domain specific language (DSL) that
describes the physics content of a HEP analysis in a standard and unambiguous way [1, 2, 3]. It
is an external DSL, with custom-designed syntax to express analysis-specific concepts, reflecting
conceptual reasoning of particle physicists. ADL is designed as a generic, multipurpose construct
for users with different goals and levels of expertise. It can be used by experimentalists for full
scale data analysis, phenomenologists for reinterpretation or sensitivity studies, students for
education, or the wider public for familiarizing with HEP or studies on open data.

ADL is designed to be framework-independent, meaning that any framework recognizing
the ADL syntax can perform tasks with it. This independence was adopted to decouple physics
information from software / framework details and present the physics logic in a standalone way.
This enables a multipurpose use of ADL, as it can be automatically translated or incorporated
into the GPL or framework most suitable for a given purpose. It also allows easy communication
between different groups, such as different analysis groups, experiments and phenomenologists,
etc., and facilitates analysis logic preservation. Drawing an analogy between analysis code
development and building construction, working directly in a GPL would be equivalent to
starting from the foundation below the ground. If we opt to use an established framework
from an experiment it might be analogous to starting from an existing building where there is
already a fountation and few floors but there is also the old plumbimg and wiring that comes
with it. In contrast, using ADL is similar to modular construction, i.e. creating a building with
a sturdy foundation, constantly updated infrastructure and pre-made ready to install floors.

ADL scope is centered on describing the physics logic in event processing. It includes
definitions of simple and composite objects (jets, muons, top quarks, etc.), event variables
(transverse mass, effective mass, etc.), optimizations (χ2 optimization for reconstructing the
best top quark pair), event selections (nelectrons > 0, mT > 140, etc.) and event weighting.
Expression of systematic uncertainties would also be included within the ADL scope, however
the syntax for these is still under development. Histograms and expressions of existing analysis
results such as counts and uncertainties, are also a part of the ADL scope. However details of
background estimation procedures and statistical analysis are outside the scope.

The analysis description written in ADL syntax is contained within a plain, easy-to-read text
file called the ADL file. This file consists of multiple types of blocks separating different analysis
components such as object, variable and event selection definitions. Blocks adopt a keyword-
expression structure, where keywords specify analysis concepts and operations. Apart from the
DSL keywords, the current syntax includes mathematical and logical operations, comparison
and optimization operators, reducers, 4-vector algebra and standard HEP functions (e.g. ∆ϕ,
∆R). One and two-dimensional histograms with fixed or variable bins for object and event
quantities can also be defined. Externally available analysis output including event counts and
uncertainties (e.g. published by experiments) can also be documented in the ADL file. Some



analyses may contain variables with complex algorithms non-trivial to express with the ADL
syntax (e.g. stransverse mass, aplanarity) or non-analytical, heavily numeric functions (e.g.
machine learning models, efficiency tables). Such variables are encapsulated in self-contained,
standalone external functions written in a GPL that can be referenced from within an ADL file.
Further details and example implementations of the ADL syntax are documented in [10].

ADL’s ongoing developement has continuously been accompanied by the transcription of
ATLAS and CMS analyses from a wide spectrum of physics areas (e.g., Higgs, Top, SUSY,
exotics). A growing repository of ADL analysis transcriptions can be found in [4]. This allows
to test the capacity of existing syntax to describe state-of-the art analysis operations, while
determining and adressing further syntactic requirements. A recent study through an ongoing
ATLAS heavy lepton analysis lead to a prototype implementation of systemeatic uncertainties
with an ATLAS-style treatment, where the up and down variations are typically stored in
ntuples, and implemented as event weights. Work continues towards syntax generalization.

2.1. Analysis visualization with ADL
One significant virtue of adopting a well-defined declarative DSL for HEP analyses is the
potential of performing static program analysis, i.e. analysis of source code without its execution,
for a variety of purposes. One implication is to obtain a visualisation of the analysis physics logic
via graphs automatically generated from the ADL file. A prototype auto-graph generator was
recently implemented based on the graphviz package, and is available through Visual Studio
Code [5]. ADL files undergo simple parsing, and converted a a description in the native dot

language of graphviz. The graph represents all input objects, derived objects and regions as
nodes, and shows their connections to each other. Figure 1 shows the graph representation of
a CMS SUSY analysis [6] obtained by the above mechanism. Work is ongoing to develop this
prototype into a more mature tool based on a formal ADL syntax parsing.

Figure 1. Auto-generated graph representation of the CMS search for electroweak SUSY in
final states with hadronic, boosted WW, WZ and WH [6] from the ADL file [7] via a graphviz-
based tool prototype [5].

ADL helps to design and document a single analysis in a clear and organized way, but its
distinguishing strength is in navigating and exploring the multi-analysis landscape, for which
static analysis provides an essential tool. For example, static analysis can assist and automate
query among, or comparison between multiple analyses in the space of event properties. It can
be used to determine analysis overlaps, identify disjoint analyses or search regions, which in turn
can help to find the feasible combinations with maximal sensitivity and automate large scale
combinations of analyses. Work towards developing such infrastructures is ongoing.



3. CutLang
CutLang is an infrastructure consisting of a run-time interpreter for ADL and auxiliary tools.
It started as an exploratory protype and has matured over the years [8, 9, 10, 11]. CutLang is
written in C++ and is based on ROOT classes for Lorentz vector operations and histogramming.
ADL parsing is performed by the state-of-the art tools Lex and Yacc. CutLang has a
large inventory of predefined and debugged functions which guarantee correct cut efficiency
calculation, correct combinatorics without double counting, sorting, unions of multiple object
types, etc. It also has the ability to execute algorithms with multiple regions in parallel, to cache
the results of the preselection and use it in regions dependent of the preselection, to solve χ2

optimization problems for heavy particle reconstruction from daughters, to save events at any
stage of the analysis in flat ROOT ntuples or as comma separated values in text files.

Events are input via ROOT files in multiple types of formats (including Delphes, CMS
NanoAOD, ATLAS/CMS Open Data, LVL0, FCC), and more can be easily added. All event
types are internally converted into predefined particle object types, which allows an option
to run the same ADL file on different input types. Analysis output is given in ROOT files
that contain cutflows, bins and histograms for each region in a separate directory, along with
the ADL file itself for provenance tracking. CutLang is available in multiple platforms, i.e.
Unix, Docker, Conda, Jupyter (via Conda or binder), that allow usage in Linux, macOS and
Windows, and even on partable phones and tablets. In particular, a Docker container is made
available for analysis of CMS Open Data, which combines CutLang, xrootd and VNC. Like
ADL, CutLang is continuously and extensively stress-tested by running ADL implementations
of realistic analysis cases, including experimental data analysis, reimplementation of analyses
for reinterpretation [12] and future collider sensitivity studies [13]. It has also been extensively
used for training the next generation of students [14]. More recently, a complete CMS vector-like
quark analysis based on 2015 has been implemented and processed over CMS Open Data, and
a tutorial was made available within the context of CMS Open Data Workshop 2022 [15].

However, after years of coding by multiple developers, CutLang has become a large and
monolitic program with its own maintenance and debugging difficulties. A redesign and
reimplementation effort has recently been initiated to modernize CutLang. The most immediate
requirements that have been identified for the rejuvenation effort are the following:

• Currently input data content (e.g. objects, attributes (as muon identification, b-tagging
discriminant), triggers, etc.) used in event selection needs to be manually hard-coded into
the CutLang syntax parser. Input data attributes must be separated from the ADL core
syntax to achieve a dynamic addressing of various data formats.

• Currently external functions for calculating complex or non-analytical variables are
integrated manually into CutLang. Their integration needs to be automated, and names
should be separated from the core ADL syntax.

The new system currently under development will allow the decoupling of the core grammar
and eliminate the need to hard-code data attributes or function names. After initial parsing, the
system will match data attributes and function names to those within an external library. This
will allow for a more flexible and portable system, which does not require direct maintenance
on the core code, and easily link to different function implementations. Deployment of the
independently developed system into the CutLang infrastructure is expected by mid-2023.

4. Dynamic Domain Specific eXtensible Language
One aspect worthwhile exploring is the applicability of ADL and CutLang principles to other
domains such as non-collider or dark matter experiments. This could enable more informed
global fits through a more coherent analysis of data from diverse sources. This notion led to the
creation of the so called DDSXL, the Dynamic Domain Specific eXtensible Language protocol.



The main idea behind this protocol is to separate different functionalities inherited from CutLang
into different services which make themselves available to a central core application. All other
tools and complexities being hidden from the user, the user’s only interaction happens with
this DDSXL core. By seperating the DSL and its parsing from the execution engine doing the
run-time interpretation, it becomes possible to address the third requirement.

Following this logic, the new tool can execute not only the algorithms of ADL but any
other DSL description in any other domain. The input text based on a domain-specific syntax,
prepared by the user and executed by the DDSXL core, will henceforth be called an xDL file.
Each such DSL can be integrated into the DDSXL system by matching the following availability
requirements: 1) a parsing service, 2) an execution engine, 3) a set of (N) libraries defining the
keywords and functions of that language.

The word dynamic in the new protocol’s name can be justified by making each DSL available
at run-time. Similarly each language can be extended (hence eXtensible) at run time by adding
another library providing new functionality. The DDSXL protocol is depicted in Figure 2.
Different DSLs and the associated tools are represented by horizontal rectangles of different
colors. In this notation, M such languages can be defined through M parsing and executing
engines and N×M libraries.

Figure 2. Schematic presentation of the DDSXL protocol.

Once the core service is running, a DSL registers itself to the DDSXL core by providing a
parsing service. The goal of this service is to receive the relevant xDL file and to produce an
abstract syntax tree (AST) that can be executed by that DSL’s interpretation engine running
as another service. The execution engine needs the definitions of the necessary functions (e.g.
∆R) of the associated DSL. The associated libraries provide exactly that, by sending responses
to the definition requests. Naturally each such library needs to register itself to the execution
engine as a run-time service.

By converting the whole communication protocol into a set of services around a central core,
the whole system can be generalized into a network based setup. Each DSL can run on a
different server or each component such an engine or a library can run on a different server or all
components can run on a single machine: DDSXL is flexible enough to allow various topologies.

As of this note’s writing, a prototype has been put together and basic functionality has
been tested. For this prototype, the execution protocol steps and technologies to be used are
identified, and include gRPC (https://grpc.io/) and GraphQL (https://graphql.org/) . Test
servers and clients are also written to validate the intended functionality. The run-time library
addition was successful and the DDSXL core application correctly received the keywords of
the language as published by the parser. Overall, DDSXL working logic is akin to that of
”terraform”, which is often used in cloud computing (only more generally orchestrating for
everything). In principle, the ADL/CutLang/DDSXL trio is a candidate to form an Analytics
as a Service (AaaS) platform, and through interest, usage and support from the community, in
long term, it could evolve into one. The development of the DDSXL protocol is ongoing.

https://grpc.io/
https://graphql.org/


5. Conclusions and Outlook
Declarative or domain specific languages are emerging as means to express analysis workflows
or physics logic in a more systematic and clear way. Analysis Description Language (ADL) is
a prominent example that demonstrates the feasibility and advantages of this approach. ADL,
as a framework-independent construct enables multipurpose use and preservation of the physics
logic. ADL syntax, already capable of expressing a large variety of analysis logic, is continuously
being tested by real world examples, towards refinements and improvements. ADL also opens a
wealth of possibilities through static program analysis in areas of analysis visualization, queries,
comparisons and overlap studies. A graphviz-based prototype tool drawing analysis logic flows as
graphs was presented as a first demonstration in this direction, and more are under development.

CutLang, the run-time interpreter for ADL already has the capacity to parse and process
analyses of moderate complexity over multiple event formats in multiple platforms. A
fundamental modernization in CutLang’s core, to decouple input data type or external function
names from the ADL syntax, towards enabling the capability to automatically integrate new
input types and new external functions is well underway. We anticipate the use of DSLs to
expand beyond the HEP community and into other fields of science, where similar analysis
workflows are used. Therefore, a parallel effort is ongoing to design Dynamic Domain Specific
eXtensible Language (DDSXL), a new infrastructure to generalize the use of ADL and CutLang
to multiple domains. The development and adoption of the ADL/CutLang/DDSXL system have
the potential to transform the way we conduct and communicate physics analysis, enabling a
more systematic and transparent approach to science, and hence will be continuously explored.
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